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KG-MTL: Knowledge Graph Enhanced
Multi-Task Learning for Molecular Interaction

Tengfei Ma, Xuan Lin∗, Bosheng Song, Philip S. Yu, Fellow, IEEE , Xiangxiang Zeng∗, Senior
Member, IEEE

Abstract—Molecular interaction prediction is essential in various applications including drug discovery and material science. The
problem becomes quite challenging when the interaction is represented by unmapped relationships in molecular networks, namely
molecular interaction, because it easily suffers from (i) insufficient labeled data with many false-positive samples, and (ii) ignoring a
large number of biological entities with rich information in the knowledge graph. Most of the existing methods cannot properly exploit
the information of knowledge graph and molecule graph simultaneously. In this paper, we propose a large-scale Knowledge Graph
enhanced Multi-Task Learning model, namely KG-MTL, which extracts the features from both knowledge graph and molecular graph in
a synergistic way. Moreover, we design an effective Shared Unit that helps the model to jointly preserve the semantic relations of drug
entity and the neighbor structures of the compound in both knowledge graph and molecular graph. Extensive experiments on four
real-world datasets demonstrate that our proposed KG-MTL outperforms the state-of-the-art methods on two representative molecular
interaction prediction tasks: drug-target interaction prediction and compound-protein interaction prediction. The source code of
KG-MTL is available at https://github.com/xzenglab/KG-MTL.

Index Terms—Machine Learning, Knowledge Graph, Multi-Task Learning, Drug Discovery
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1 INTRODUCTION

MOLECULAR interaction prediction between targets
plays a critical role in many applications, including

pharmacology and clinical application [1]. Such a process
is to predict the unmapped relationships between unknown
targets, namely molecular interaction prediction (MIP), and
it is one of the fundamental steps to explore the candidate
drugs for targets in drug discovery, which further speeds up
the costly and time-consuming process of experiment [2],
[3]. A typical MIP pipeline takes the features of drug and
target (e.g., protein or gene) as the input and outputs the in-
teraction probability of given drug-target pair. The predicted
interactions are beneficial to various subsequent tasks, in-
cluding molecular property prediction [4], [5], [6], [7], drug
reactions [1], [8], drug effectiveness [9] and drug side effects
prediction [10], [11]. However, accurately recognizing the
molecular interaction with computational methods remains
challenging.

Previous approaches on molecular interaction have ex-
ploited various types of molecular features, such as chemi-
cal structures [12] and the similarities between drug-target
pairs [13]. However, these methods heavily depend on
the design of hand-crafted features and domain knowl-
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edge from labeled data. Recently, various deep neural net-
works and graph neural networks have been developed
and achieved excellent performance for MIP. Most existing
methods focus on modeling each chemical molecule as the
molecular graph to capture the neighbor structure informa-
tion [14], [15], [16], or integrating various networks as side
information to boost the prediction performance, including
protein interactions [17], drug-drug interactions [18], and
drug-target interactions [19], [20]. However, these works
are using either local features or a relatively small net-
work that can not comprehensively consider most biological
entities with comparison to large-scale knowledge graphs
(e.g., DRKG includes 97,238 entities and 5,874,261 triples).
Furthermore, there are many false positives (i.e., samples
originally regarded as positive are actually potential nega-
tive ones) and limited labeled samples in the constructed
networks, which will result in negative influence on model
performance [21], [22].

Recent studies adopted knowledge graph (KG) to en-
hance the biological data reliability in downstream tasks,
such as drug-drug interaction (DDI) prediction [23], adverse
DDI [24], and unknown drug-target interaction (DTI) or
compound-protein interaction (CPI) prediction [25]. They
apply knowledge graph representation learning to integrate
multiple data sources. However, these works directly learn
latent entity embedding without considering multiple re-
lationships, which are limited in mining semantic relations
and topological structures of each entity in KG. For example,
KGNN [23] merely focused on the DDI information while it
ignored other types of entities and relations in KG.

We observe that existing methods on molecular interac-
tion prediction do not make full use of knowledge graph
as well as molecular graph and only consider partial in-
formation. These limitations and the success of multi-task
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learning [26], [27], [28] motivate us to develop a new method
to fully exploit the information from both knowledge graph
and molecular graph to predict the molecular interaction. In
particular, we propose a novel large-scale knowledge graph
enhanced multi-task learning model, named KG-MTL. The
idea of KG-MTL is natural and intuitive, which combines
the topological structure of the molecular graph and the
corresponding biological entities of KG, by using multi-
task learning strategies. In addition, we adopted a compre-
hensive biological KG including drugs, diseases, proteins,
genes, pathways, and expression. Therefore, we can mine
a large number of potential drug-target interactions from
the KG that can improve the performance of other tasks
by some query patterns (see details in Section 3.7). In a
nutshell, our framework consists of three major modules.
Specifically, (i) DTI module is used to extract the features of
drugs and related entities from large-scale KG. (ii) CPI mod-
ule is adopted to learn two representations of the molecular
graph and protein sequences. (iii) Shared Unit is designed to
share task-independent drug features between the previous
two modules, by combining the molecular representation
of compound and corresponding drug entity embedding
from KG. In summary, the contributions of this work are
as follows:

1) To the best of our knowledge, this is the first work to
apply a large-scale knowledge graph on a multi-task
learning model, namely KG-MTL, to the problem of
molecular interaction prediction.

2) The proposed KG-MTL has two distinct technical high-
lights. (i) KG-MTL jointly extracts the features from
both knowledge graph and molecule graph synergis-
tically; and (ii) the novel shared unit is designed to cap-
ture the semantic relations of drug entity in the knowl-
edge graph while preserving the topological structures
of the compound within the molecular graph.

3) Extensive experiments on four real-world datasets il-
lustrate that KG-MTL outperforms the state-of-the-art
molecular interaction prediction baselines in two rep-
resentative applications: drug-target interaction predic-
tion and compound-protein interaction prediction.

The rest of this paper is organized as follows. In Sec-
tion 2, graph-based and KG-based methods on the MIP
prediction tasks are introduced. The formulation and the
details of KG-MTL are presented in Section 3. Section 4
illustrates various experiments (e.g., Ablation Experiments)
to validate the effectiveness of KG-MTL. And in Section 5,
we discuss the future work and existing issues to improve
the molecular interaction prediction.

2 RELATED WORKS

Over the years, molecular interaction prediction (MIP) has
received great attention in drug discovery. Previous works
mainly focused on investigating various types of molec-
ular features to predict the molecular interaction. For ex-
ample, a bipartite local model was proposed to predict
unknown targets by using chemical structures information
[12]. And Gaussian interaction profile kernels were designed
to describe the similarities among drug-target interaction
profiles [13]. However, these methods heavily depend on
feature engineering and domain knowledge.

2.1 Graph-based Methods.
More recently, various deep neural networks and graph
neural networks (GNNs) have achieved excellent perfor-
mance for molecular interaction prediction. In particular, an
end-to-end deep learning framework named GNN-CPI [15]
that applied GNN layer to extract the fingerprint features
of the compound represented by molecular graph. In the
same line of work, a novel heterogeneous network named
NeoDTI [19] learned low dimensional vector representation
of drug by integrating multiple drug-related networks to
predict the unknown target. Moreover, MONN was pro-
posed to jointly predict both non-covalent interactions and
binding affinities between compounds and proteins [29].
However, these methods are either local features of the
molecule or relatively small to consider most biological
entities. With comparison to the graph-based (a.k.a network-
based) methods, our proposed KG-MTL can automatically
extract the features of drug from molecular graph, and also
obtain the semantic relations information between drug and
other entities from the large-scale knowledge graph.

2.2 KG-based Methods.
Recent studies on molecular interaction prediction also ap-
ply large-scale knowledge graph (KG) to extract various
biological entities. For example, a novel method named
GAMENet was constructed to integrate multiple datasets
with DDI information in KG to predict unknown adverse
DDI [24]. And TriModel adopted KG embedding to learn the
representations of drug and target for DTI prediction [25].
These models usually extract drug features using various
embedding methods, and directly learn entity embedding
from KG, while they easily ignore the semantic relations
and topological features between drug and other entities.
Compared with this line of methods, our KG-MTL differs
from them in the following aspects: (i) our proposed frame-
work jointly considers multiple types of drug entity and
relations from knowledge graph and the neighbor structures
information from the molecular graph, to further improve
the performance between two tasks. and (ii) we develop
an effective shared unit module to train the two tasks that
works well under our framework by synergistically using
multi-task learning strategies.

3 METHOD

In this section, we firstly formulate molecular interaction
prediction problem. Then we introduce the framework of
the proposed KG-MTL. Finally, we discuss the model train-
ing and learning strategy in detail.

3.1 Preliminaries
Problem Definition. For ease of understanding of our pro-
posed method, in this paper, we focus on two representative
applications of molecular interaction prediction: drug-target
interaction (DTI) prediction and compound-protein interac-
tion (CPI) prediction. In DTI task, we aim to estimate the
interaction probability pdtiij of a drug-target pair (di, tj) in
knowledge graph G. As to CPI task, our goal is to evaluate the
occurrence probability score pcpiij with a compound-protein
pair (gi, sj) in molecule graph. Therefore, we aim to learn a
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Fig. 1. The framework of our proposed KG-MTL.

prediction function (pdtiij , p
cpi
ij ) = F((di, tj), (gi, sj)|Θ, G) ,

where Θ denotes the model parameters.
Knowledge Graph. We consider a KG as G that provides
base information for a drug-target pair (di, tj) ∈ Pdti in DTI
task, where Pdti is the set of DTI pairs. And we define edi
and etj as the learned embeddings of corresponding drug
entity di and target entity tj from G, respectively.
Molecule Graph. Given compound-protein pair (gi, sj) ∈
Pcpi, where Pcpi denotes the set of CPI pairs, the compound
gi is defined by a molecule graph transformed from SMILES
using RDKit [30]. And gi = (V, E) where V denotes the set
of atoms and E is the set of edges between atoms. Then

we denote a global embedding of molecule graph gi as egi .
Meanwhile, we define a protein sj in the format of amino
acid sequences. And we represent the protein sequence
embedding as esj by using word embedding.

3.2 Framework of KG-MTL

The framework of KG-MTL is illustrated in Fig. 1, and
it consists of three modules. In DTI module, the relational
graph convolutional network (RGCN) is applied to learn
the semantic relations and topological structure information
of drug and target entities from the knowledge graph,
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which helps to predict unknown drug-target interaction. In
CPI module, we adopt convolutional neural network (CNN)
and graph convolutional network (GCN) to extract more
chemical contexts and the molecular structures from protein
sequence and compound molecular graph respectively. And
more importantly, we design an effective Shared Unit to
fuse the molecular structure of compound with the semantic
relations of the corresponding drug entity from the previous
two modules, to further improve the model performance.

3.2.1 DTI Module.
In the DTI task, we learn latent representations of drug and
target entities from large-scale DRKG [31] which provides
much information shared for two tasks as shown in Fig. 1
(i.e., DTI Module). Specifically, we first generate a subgraph
from DRKG using neighbor sampling [32] to make the model
converge faster. Then we employ a 3-layer RGCN model
[33] to extract the semantic relations and topological struc-
ture of entities from the previously generated subgraph.
And multiple aggregation techniques are adopted in RGCN
to consider different types of relationships between entities,
and the specific operations are as follows:

e
(l+1)
i = σ(

∑
r∈R

∑
j∈N ri

1

ci,r
W(l)

r e
(l)
j + W

(l)
0 e

(l)
i ), (1)

where e
(l)
i and e

(l)
j denote the embedding of ith and jth

entity in lth RGCN layer (e.g., e(l)di and e
(l)
tj ∈ Rdim), and

Wr represents the weights of relation r, andN r
i denotes the

set of neighbors of node entity i under relation r ∈ R, and
ci,r is a normalization constant, where we set ci,r = |N r

i |, σ
denotes the activation function (i.e., ReLU). Subsequently,
we combine the embeddings of drug and target entities
that learned from the last RGCN layer and termed it as
a concatenated vector [e

(3)
di

; e
(3)
tj ]. Finally, we input the

concatenated vector into a classifier, which consists of a
multi-layer perception (MLP) and a sigmoid layer to output
the interaction probability pdtiij of given DTI pair.

3.2.2 CPI Module.
As shown in Fig. 1 (i.e., CPI Module), given a molecule
graph gi and a protein sequence sj in CPI pair (gi, sj), we
first use a GCN layer to continuously update the node em-
bedding vi in a molecular graph through message passing
[34], where each atom node vi ∈ V is the i-th atom initialized
by a 78-dimensional feature vector vi [35]. Next we input
the hidden feature matrix M (l) of the last GCN layer into a
MLP readout layer, to obtain the global representation e

(1)
gi

and we have:

e(1)gi =
1

|V|

|V|∑
i=1

σ(f(vi)). (2)

3.2.3 Shared Unit
To effectively associate DTI and CPI modules and to address
the limitations in previous works, we design a novel Shared
Unit to mix the molecular structures of compound with the
semantic relations of the corresponding drug entity in the
knowledge graph. As shown in Fig. 1 (i.e., Shared Unit),
given drug entity di and the corresponding compound

gi, we firstly take the drug entity embedding e
(l)
di

of the
lth RGCN layer from DTI module and molecular graph
embedding e

(l)
gi of the lth linear layer from CPI module as

the input of Shared Unit (e(l)di , e(l)gi ∈ Rdim). Secondly, we
utilize four trainable weights (wdd,wdg,wgg,wgd ∈ Rdim)
to automatically learn the weight of each input feature as
follows:

e
′

d = wT
dd � e

(l)
di

+ wT
gd � e(l)gi , (3)

e
′

g = wT
gg � e(l)gi + wT

dg � e
(l)
di
, (4)

where e
′

d, e
′

g ∈ Rdim are the features obtained from lin-
ear transformation of e

(l)
di

and e
(l)
gi respectively, and � de-

notes the element-wise multiplication (i.e., linear operation).
Thirdly, to further combine with the feature vectors of drug
and compound, we construct a cross matrix C ∈ Rdim×dim
by pairwise interactions of their latent feature e

′

d and e
′

g (i.e.,
cross operation) as shown in Eq. (5).

C = e
′

d(e
′

g)
T =


e

′(1)
d e

′(1)
g · · · e

′(1)
d e

′(dim)
g

...
...

...
e

′(dim)
d e

′(1)
g · · · e

′(dim)
d e

′(dim)
g

 . (5)

To maintain the symmetry of learned embeddings, we mix
the features along both horizontal and vertical directions
by designing two intermediate variables Cd = C and
Cg = CT, where Cd, Cg ∈ Rdim×dim, so we can capture
the high-dimensional features of drug entity and compound
molecule. Finally, we input Cd and Cg into a non-linear
operator to project them back to the original feature space of
the input of two modules, and they are calculated as follows:

e
(l+1)
di

= Cd ⊗ ŵdd + Cg ⊗ ŵgd + bd, (6)

e(l+1)
gi = Cd ⊗ ŵgg + Cg ⊗ ŵdg + bg, (7)

where ⊗ denotes matrix multiplication, ŵdd, ŵgd, ŵdg ,
ŵgg are trainable weights and bd, bg represent bias vectors.
e
(l+1)
di

and e
(l+1)
gi are used as the inputs of next layer in DTI

and CPI modules. Note that once the Shared Unit is used, it
will merge the learned embeddings of the drug entity and
the corresponding compound into a new representation,
which will update the drug or compound representation
of the candidate layer in each module for iterative training
respectively. Otherwise, it goes directly to the next layer for
model training. Actually, the Shared Unit can be regarded
as a part of the component that added between the linear
and RGCN layer. Here, we only added a Shared Unit in
the first component (i.e., the first linear and RGCN layer)
and it can be added in the second and subsequent compo-
nent as the number of layers increases. Different from the
traditional operation method in multi-task learning (e.g.,
Cross-Stitch [26]), our proposed method can obtain more
high-order features from knowledge graph, we suggest that
Shared Unit should be modeled at the lower layer to cap-
ture more general features. We will evaluate the impact of
number and settings of Shared Unit in parameter sensitivity
analysis (Section 4.8).

3.3 Design Decisions for Shared Unit
We design the novel Shared Unit for multi-task learning
between related tasks. The primary idea is to apply the
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explicit features efficiently crossing different tasks. For the
sake of simplicity, we use multi-task learning with two
tasks in this work. Intuitively, the designed Shared Unit can
regularize both tasks by learning and enforcing the shared
representations (i.e., crossing features). And the proposed
Shared Unit is composed of two parts, including linear and
cross operation.
Linear Operation. The linear operation can model the linear
combinations of features from both tasks using dot product
with learnable parameters. Intuitively, we regard it as an
attention mechanism [36], where the importance (i.e., weight)
of different feature dimensions can be learned to improve
the representation ability of drug and compound features.
Cross Operation. Considering the Weierstrass approxima-
tion theorem [37], any functions under certain smoothness
assumption can be approximated by polynomial to arbitrary
accuracy. So we examine the ability of high-order interaction
approximation of the Shared Unit.

Theorem 1. Denote the representations of given drug
and compound entities as e

′

d = [e
′(1)
d · · · e

′(dim)
d ]T and

e
′

g = [e
′(1)
g · · · e

′(dim)
g ]T , respectively. Then, the cross terms

e
′

d and e
′

g in ‖e′

d(L)‖1 and ‖e′

g(L)‖1 (i.e., the L1-norm
of e

′

d and e
′

g) with maximal degree are represented by
kα,βe

′(1)α1

d · · · e
′(dim)αdim
d e

′(1)β1
g · · · e

′(dim)βdim
g , where kα,β ∈

R, αi, βi ∈ N for i ∈ {1, · · · , dim}, α1 + · · ·+ αdim = 2L−1,
and β1 + · · ·+ βdim = 2L−1 (L ≥ 1).

And the
∏dim
i=1 e

′(i)αi
d e

′(i)βi
g is also called combinatorial fea-

ture, which can be obtained by measuring the interactions
of various original features. The Shared Unit can automat-
ically model the high-level fused representation of drugs
and compounds according to Theorem 1, which proves
the superior approximation ability of the cross operation.
Moreover, we empirically evaluate each operation in the
Ablation Experiments (Section 4.7).

3.4 Model Training
Given the DTI pairs, CPI pairs and the corresponding labels
in the training set for both two tasks, our optimization goal
is to minimize the following cross-entropy loss as follows:

Ldti = −
∑

(di,tj)∈Pdti

ydtiij log pdtiij + (1− ydtiij ) log(1− pdtiij ),

(8)

Lcpi = −
∑

(gi,sj)∈Pcpi

ycpiij log pcpiij + (1− ycpiij ) log(1− pcpiij ),

(9)

where Pdti (resp., Pcpi) denotes the set of drug-target (resp.,
compound-protein) pairs in training set and ydtiij (resp., ycpiij )
is the true label of DTI pair (di, tj) (resp., CPI pair (gi, sj)).
Meanwhile, L2 regularization with a penalty coefficient of
1 is adopted to prevent the model from overfitting. And
we adopt a sigmoid function to calculate the interaction
probability of given pairs.

3.5 Learning Strategy
In multi-task learning, it is necessary to optimize multiple
objectives at the same time. A simple way is to directly

Algorithm 1 Multi task training for KG-MTL
Input: CPI pairs Pcpi, Ucpi, DTI pairs Pdti, Udti, KG Gkg , and

g, s, d, t represent the compound, protein, drug, target be-
tween CPI and DTI pairs, respectively;

Output: F(g, s, d, t|Θ, Pcpi, Ucpi, Pdti, Udti, Gkg);
1: Initialize all parameters;
2: Split training set from Pcpi/Ucpi and Pdti/Udti for CPI and

DTI tasks, respectively, by 10-fold cross validation;
3: for zero to training epochs do
4: Sample subgraph Gsub from Gkg with negative triples;
5: // CPIs&DTIs prediction tasks with Shared Unit
6: for i steps do
7: Embed each node of subgraph Gsub;
8: Extract heterogeneous features do, to of d and t from

Gsub by RGCN module;
9: Represent the compound g and protein s as go and so

by GCN, linear modules and CNN respectively;
10: Obtain the representations of compound gr and drug

dr from go and do fused by the Shared Unit module;
11: Predict the potential CPI and DTI using the concate-

nated vectors [gr; so], [dr; to];
12: Calculate the task-dependent loss function by Eq. (8-9);
13: Calculate the total loss by Eq. (10);
14: Update all parameters of F by gradient descent;
15: end for
16: end for

sum up the losses of multiple tasks, but it cannot adapt
to the differences between various tasks. To solve the lim-
itation, in this paper, we introduce a method based on
Bayesian uncertainty to alleviate the potential negative risk
in multi-task learning [38]. To apply the theory to our
sigmoid classifier, we relied on the assumption [39] that
x
λ2 (e

x
λ2 + 1) ≈ (ex + 1)

1
λ2 , as it can be simply observed

that the equation holds when λ = 1. Then, considering
the sigmoid likelihood and loss functions of the two tasks,
the final form of the optimization objective is obtained as
follows:

Ltotal = L(λ1, λ2)

= − log(P (ydti|fdti(·), λ1) · P (ycpi|fcpi(·), λ2))

=
1

λ21
Ldti +

1

λ22
Lcpi + log λ1 + log λ2,

(10)

where λ1 (resp., λ2) is trainable parameter of the probability
model in DTI (resp., CPI) task, ydti (resp., ycpi) represents
the label of DTI (resp., CPI) pair and fdti (resp., fcpi) is the
mapping function of DTI (resp., CPI) module.

The pseudocode of jointly optimization procedure for
KG-MTL is outlined in Algorithm 1. For the given inputs,
Pcpi (resp., Pdti) and Ucpi (resp., Udti) represent the positive
and negative samples of CPI (resp., DTI) pairs, and Gkg
is the large-scale knowledge graph DRKG. At the begin-
ning (Line 1), we use a fixed random seed to initialize
all learnable parameters Θ in KG-MTL. Then we split the
samples of CPI and DTI pairs into the training, validation
and test set, respectively, by a ratio of 8/1/1 (Line 2). For
each training iteration, we will sample a subgraph Gsub
from Gkg (Line 4), and then a RGCN module is applied
to extract heterogeneous features (i.e., do for drug d and to
for target t) from Gsub (Line 7-8). Moreover, in CPI mod-
ule, we learn compound representation go from molecular
graph g by GCN model, and we extract the embedding so
from protein sequence s using linear layer (Line 9). Once
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Query Pattern
Target: TRIM33

Disease: Schizophrenia

Drug: Biotin

regulates interacts
TRIM33 Biotin

Schizophrenia

？

(Biotin, interacts, Schizophrenia)

(TRIM33, regulates, Schizophrenia)
^

(Biotin, interacts,TRIM33)

KG Logic Rule

Fig. 2. The query pattern of a potential drug-target interaction in our
proposed KG-MTL.

the representations of compound and corresponding drug
entity are obtained, we input them into the Shared Unit
module to output the mixed features gr, dr , and then they
will be updated in next linear layer and RGCN layer (Line
10). Next, we adopt the stitched vectors (i.e., [gr; so] and
[dr; to]) to predict CPI and DTI (Line 11). Furthermore, we
perform Learning Strategy on the loss function with the
predicted values (Line 12-13). At last, we update all the
trainable parameters (Line 14). The process stops when the
model converges.

3.6 Computational Complexity Analysis
The computational complexity of KG-MTL consists of three
parts. Specifically, the update of entity embedding for
RGCN model in DTI prediction task has the computational
complexity of O(dim2NK|R|) by Eq. (1), where K is the
number of neighbors, N is the number of nodes and |R|
represents the number of relations in the knowledge graph.
The learning process of molecule graph and protein se-
quence by GCN and CNN models in CPI prediction task
takes O(n2dim) and O(dim2F 2) respectively, where n is
the number of nodes in molecule graph and F represents
the size of the kernel in CNN model. The updating of shared
features from both two tasks are related to linear and cross
operators, so they take O(dim) and O(dim2) respectively
(see Section Shared Unit), where dim is the dimension of
feature vectors. Therefore, supposing the training stops after
i steps, the overall computational complexity is obtained as
follows:

O(((dimNK|R|+ n2 + dimF 2 + 1 + dim)dim)i),

note that K � N , n � N and |R| � N . The main
complexity is matrix multiplication which is also a basic
operation in deep graph neural networks. And we can
observe that the overall complexity of KG-MTL mainly
depends on the feature size dim, the number of relations
|R|, and the number of nodes in the knowledge graph. For
large-scale knowledge graphs and datasets, we speed up the
training process in each iteration by using sparse matrix and
subgraph sampling.

3.7 Query Pattern of Knowledge Graph
In our paper, the adopted knowledge graph is a comprehen-
sive biological knowledge graph relating to drugs, diseases,
proteins, genes, pathways, and expression. It includes 5.9
million edges belonging to 107 types of relationships (e.g.,
treatment, regulates). In fact, the knowledge graph does not
contain the existing drug-target pairs and is only used to

extract semantic information from drug and target repre-
sentations. The learned embedding is adopted to determine
whether there is an interaction between drug-target pairs.
Fig. 2 shows a query pattern to discover the potential
interaction between a drug-target pair. We first obtain some
logic rules of a drug-target pair from the adopted knowl-
edge graph (see the middle part of Fig. 2). Then we can
observe that the drug Biotin (ID: DB00121) has an interaction
relation with the disease Schizophrenia (Mesh ID: D012559).
Meanwhile, the disease Schizophrenia can be regulated by
target TRIM33 (Gene ID: 51592). Finally we can further infer
that the drug Biotin is more likely to interact with target
TRIM33.

4 EXPERIMENTS

4.1 Datasets and Settings
We evaluate our proposed KG-MTL1 by using four datasets:
1) DrugBank collects the unique bioinformatics and chemin-
formatics resources that contain 16,553 drug-target interac-
tions with 5,996 drugs and 3,479 targets [40]. 2) DrugCentral
contains 9,477 drug-target interactions with 1,427 drugs and
1,106 targets [41]. 3) human and 4) C.elegans are high qual-
ity datasets that integrate various resources [21]. The human
dataset contains 2,471 compound-protein interactions with
1,080 compounds and 816 proteins while the C.elegans
dataset includes 2,547 compound-protein interactions with
886 compounds and 806 proteins. To provide much struc-
tured information on various entities, we adopt a large-scale
knowledge graph named DRKG that collects 97,238 entities
and 5,874,261 triples belonging to 13 entity-types (e.g., drug,
target and disease) and 107 edge-types respectively [31].

4.2 Data processing
The DrugBank and DrugCentral datasets are adopted in
DTI task, and we randomly sample from positive samples
to generate the same number of the negative DTI pair
as positive one since no negative DTI pairs are provided.
Subsequently, we take a drug (resp., target) sample with
DrugBank ID (resp., protein for Uniprot ID) from training
set, and then map the sample ID to the corresponding entity
of DRKG to obtain the embedding of drug or target. As to
CPI task, the positive and negative samples are unbalanced
in human and C.elegans datasets, and thus we adjust the
ratio to 1:3 to adapt the prediction model. Besides, we re-
moved these samples whose drug entity can not be found in
the knowledge graph to merge the features of multiple tasks
from the same molecule samples (i.e., the drug entity and
corresponding molecular graph of the compound). After
that, we use 10-fold cross-validation and choose two folds
as the validation and test sets in each iteration to split the
dataset into 8/1/1. To evaluate the performance, we adopt
accuracy (ACC), area under the ROC curve (AUC) and area
under the precision-recall curve (AUPR) as the metrics.

4.3 Baselines
To validate the performance of KG-MTL, we compare it with
the following state-of-the-art baselines:

1. https://github.com/xzenglab/KG-MTL
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• RF (Random Forest), SVM (Support Vector Ma-
chine) and DNN (Deep Neural Network) applied the
molecular fingerprints (ECFP) of drug or compound
and the PSC features of protein descriptors, and
DNN used a three layer DNN with hidden size of
1,024 [42].

• DeepDTI [43] applied a neural network based on
restricted boltzman machine using ECFP and PSC
features for DTI prediction.

• DeepConv-DTI [44] adopted CNN to extract the
local features of protein sequences and used fully
connected layer to encode the molecular fingerprints
of drugs for DTI prediction. Here we implemented
DeepConv-DTI to predict CPI and termed it as
DeepConv-CPI.

• GNN-CPI [15] applied GNN to encode molecular
graph of compounds and adopted CNN to obtain the
chemical features of proteins for CPI task. And we
implemented GNN-CPI for DTI prediction, denoted
by GNN-DTI.

• GraphCPI [35] extracted the molecular structures of
compounds and the chemical contexts of protein se-
quences by developing the GCN and CNN modules.

• NeoDTI [19] constructed a heterogeneous networks
to learn latent representations of drugs and targets.
We set the dimension of the edge-type projection
matrices as 512, and the learning rate to 0.001.

• TriModel [25] is an end-to-end model using KG
embedding approach for DTI task. Following the
original work, we adopt AMSGrad optimizer with
a learning rate of 0.01 to optimize the training loss.

• TransE [45] and DistMult [46] are knowledge graph
embedding models that learn the representation of
entities, which can be directly used in DTI and CPI
tasks. All hyperparameters (e.g., batch size and learn-
ing rate) of the two models are kept the same as ours.

• GCN-KG adopts the GCN [34] model to learn the
representations of entities on homogeneous KG in
downstream tasks (i.e., DTI and CPI tasks), All hy-
perparameters are kept the same as ours.

All baselines are based on the public code where we kept
the settings of models the same as reported in the original
papers. Following [43] and [42], we implemented RF, SVM
and DNN models for DTI and CPI prediction respectively.

4.4 Implementation Details
In the training of DTI task, to accelerate the training process
and to save GPU (i.e., Graphics Processing Unit) memory,
we adopt neighbor sampling to generate a subgraph of
40,000 edges from the knowledge graph DRKG [47]. Then
we construct a 3-layer RGCN model with a hidden size
of 128 and the dimension of entity embedding is set to
128 as well. And the initialization of entity embedding and
relation weights are derived from a normalized distribution
U [− 6√

dim
, 6√

dim
], where dim is the dimension of the em-

bedding [48]. As to CPI task, we use the GCN layer for
molecular graph and output a global embedding with a
dimension of 128. For two tasks, we adopt 3 fully-connected
layers with 128 hidden units and a sigmoid layer to output
the interaction probability for given pair. To optimize all

TABLE 1
Results of DTI task. The first/second row of each method corresponds

to the results on DrugCentral and DrugBank respectively.

Methods
Metrics ACC AUC AUPR

RF 0.832± 0.004
0.774± 0.003

0.589± 0.005
0.636± 0.006

0.679± 0.004
0.717± 0.004

SVM 0.688± 0.001
0.624± 0.002

0.613± 0.004
0.567± 0.001

0.590± 0.002
0.552± 0.003

DNN 0.879± 0.006
0.833± 0.005

0.941± 0.003
0.891± 0.004

0.932± 0.007
0.891± 0.008

TransE 0.853± 0.003
0.901± 0.004

0.909± 0.012
0.924± 0.003

0.929± 0.001
0.935± 0.011

DistMult 0.912± 0.001
0.893± 0.003

0.943± 0.002
0.927± 0.005

0.955± 0.001
0.932± 0.005

GCN-KG 0.833± 0.004
0.894± 0.003

0.879± 0.007
0.929± 0.004

0.893± 0.002
0.924± 0.003

GNN-DTI 0.852± 0.004
0.761± 0.007

0.921± 0.002
0.845± 0.006

0.913± 0.002
0.846± 0.005

DeepConv-DTI 0.847± 0.013
0.801± 0.009

0.903± 0.003
0.892± 0.007

0.885± 0.007
0.893± 0.004

DeepDTI 0.866± 0.007
0.636± 0.010

0.813± 0.001
0.729± 0.002

0.846± 0.013
0.778± 0.010

TriModel 0.812± 0.003
0.873± 0.001

0.883± 0.004
0.934± 0.005

0.871± 0.001
0.941± 0.001

NeoDTI 0.882± 0.007
0.891± 0.002

0.923± 0.001
0.951± 0.005

0.895± 0.016
0.917± 0.003

KG-MTL 0.964± 0.001 ↑
0.940± 0.003 ↑

0.980± 0.001 ↑
0.959± 0.004 ↑

0.982± 0.001 ↑
0.959± 0.003 ↑

KG-MTL-Sdti
0.905± 0.006
0.878± 0.004

0.946± 0.004
0.929± 0.002

0.946± 0.004
0.926± 0.003

KG-MTL-L 0.940± 0.004
0.931± 0.004

0.969± 0.005
0.946± 0.003

0.967± 0.007
0.943± 0.004

KG-MTL-C 0.934± 0.005
0.928± 0.004

0.965± 0.005
0.946± 0.003

0.964± 0.006
0.949± 0.005

trainable parameters, we use Adam optimizer [49] with a
learning rate of 0.001 and save the best model based on the
AUC metric of the validation set. And we set the number
of Shared Unit layer to 1. The batch size and epoch are 32
and 100 respectively. In this paper, we adopt a 10-fold cross-
validation to evaluate the performance of KG-MTL, and the
mean and standard deviation of all metrics are reported.

4.5 DTI Prediction Results

As shown in Table 1, we observe that KG-MTL outperforms
all other baselines. Specifically, KG-MTL improves the ACC,
AUC, and AUPR by at least 8.2%, 3.9% and 5% respectively
on the DrugCentral dataset, and 4.9%, 0.8% and 1.8% re-
spectively on the DrugBank dataset. The improvement indi-
cates that (i) compared with the methods (e.g., DeepConv-
DTI) that only learn representations of drug and protein
sequence, our method can preserve more useful information
on various drug-like compounds by the CPI module; and
(ii) compared with KG-based models (i.e., TriModel, TransE,
DistMult and GCN-KG) that learn node embedding directly,
the Shared Unit also helps the model to jointly learn the
molecular structures and the semantic relations of the drug
in DRKG, thus improving the performance of DTI task.

4.6 CPI Prediction Results

The comparison results on the CPI task are listed in Ta-
ble 2. The results illustrate that KG-MTL outperforms all
the baselines across human and C.elegans datasets. More
specifically, KG-MTL achieves at least 2.6% on AUC, 1.1%
on AUPR higher performance than other methods on the
C.elegans dataset. Meanwhile, KG-MTL achieves the best

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3188154

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: XiangTan University. Downloaded on September 11,2022 at 03:57:07 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES,XXX, XXX, XXX 8

TABLE 2
Performance of CPI task. The first/second row of each method

corresponds to the results on human and C.elegans respectively.

Methods
Metrics ACC AUC AUPR

RF 0.883± 0.002
0.912± 0.003

0.422± 0.002
0.417± 0.009

0.433± 0.007
0.431± 0.005

SVM 0.811± 0.001
0.839± 0.004

0.515± 0.008
0.417± 0.003

0.412± 0.018
0.372± 0.003

DNN 0.877± 0.002
0.911± 0.007

0.910± 0.002
0.962± 0.002

0.835± 0.005
0.922± 0.005

TransE 0.893± 0.002
0.854± 0.001

0.936± 0.008
0.927± 0.004

0.879± 0.001
0.930± 0.009

DistMult 0.881± 0.004
0.901± 0.012

0.937± 0.005
0.946± 0.006

0.878± 0.006
0.926± 0.003

GCN-KG 0.843± 0.002
0.904± 0.001

0.891± 0.005
0.932± 0.003

0.889± 0.013
0.912± 0.003

GNN-CPI 0.871± 0.013
0.843± 0.001

0.916± 0.002
0.781± 0.008

0.856± 0.009
0.713± 0.004

DeepConv-CPI 0.866± 0.003
0.856± 0.001

0.902± 0.008
0.934± 0.007

0.844± 0.002
0.825± 0.003

GraphCPI 0.747± 0.026
0.828± 0.026

0.899± 0.001
0.943± 0.001

0.781± 0.013
0.855± 0.002

NeoDTI 0.892± 0.008
0.877± 0.007

0.881± 0.045
0.910± 0.006

0.795± 0.083
0.763± 0.021

KG-MTL 0.907± 0.005 ↑
0.928± 0.003 ↑

0.949± 0.002 ↑
0.969± 0.002 ↑

0.899± 0.005 ↑
0.933± 0.005 ↑

KG-MTL-Scpi
0.876± 0.008
0.905± 0.004

0.920± 0.004
0.931± 0.002

0.851± 0.008
0.913± 0.004

KG-MTL-L 0.886± 0.004
0.904± 0.004

0.921± 0.005
0.955± 0.003

0.846± 0.007
0.918± 0.004

KG-MTL-C 0.891± 0.005
0.907± 0.005

0.923± 0.005
0.957± 0.003

0.849± 0.006
0.921± 0.005

AUC score of 94.9% with at least 3.3% absolute gain com-
pared to GNN-CPI (the second-best method) in the human
dataset. The improvement is attributed to the abundant
information brought by the DTI module that can extract
the semantic relations of drug entities from the knowledge
graph, while other methods (e.g., GNN-CPI and NeoDTI)
only learn embeddings from molecular structure of com-
pound or the topology of the drug-related network. Mean-
while, compared with the KG-based models (i.e., TransE,
DistMult and GCN-KG) that directly adopt knowledge
graph information and ignore the molecular structure, KG-
MTL has a better performance by fusing KG information
and drug structure through the Shared Unit.

4.7 Ablation Experiments

To investigate how the different operations of Shared Unit
and learning strategies improve the performance of the
proposed model, we conduct the ablation study on the
following variants of KG-MTL:

• KG-MTL-S is the variant of KG-MTL that removes
both the Shared Unit and learning strategies. So we
can adopt KG-MTL-Sdti (resp., KG-MTL-Scpi) repre-
sents the single DTI task (resp., CPI task)

• KG-MTL-L removes cross operation of Shared Unit
and simply retains the linear operation only.

• KG-MTL-C removes linear operation of Shared Unit
and retains the cross operation.

The ablation experiments results on both tasks are shown in
Table 1 and Table 2. The results prove that the Shared Unit in-
cluding linear and cross operation, and learning strategy are
all effective for both two tasks. Among all the variants, KG-
MTL-S has the most significant performance gaps compared

(a) loss curves of models on hu-
man dataset for CPI task.

(b) loss curves of models on
DrugCentral dataset for DTI
task.

Fig. 3. The loss curves of different variants of KG-MTL on DrugCen-
tral&human dataset. And the loss is calculated on validation set.

(a) AUC curves of models on
human dataset for CPI task.

(b) AUC curves of models on
DrugCentral dataset for DTI
task.

Fig. 4. The AUC curves of various variants of KG-MTL on DrugCen-
tral&human dataset. And the AUC is calculated on test set.

with KG-MTL, which indicates that Shared Unit contributes
the most to help the model to jointly capture the drug fea-
tures extracted from molecule graph and knowledge graph
that improves the prediction performance. Moreover, our
proposed method provides better performance than KG-
MTL-L and KG-MTL-C in all datasets, which proves that the
Shared Unit with complete settings is beneficial to improving
the prediction performance.

To further validate the effectiveness and stability of
Shared Unit on DTI and CPI tasks. Fig. 3 and Fig. 4 show
the loss and AUC curves of different variants of KG-MTL,
respectively. As shown in Fig. 3, we overall observe that
KG-MTL provides better robustness and stability with faster
convergence and lower loss with comparison to KG-MTL-
L and KG-MTL-C. And the loss curve of KG-MTL-S with
slower convergence gives limited performance gain on both
tasks. We believe that such significant improvements can
be attributed to the shared features of drugs or compounds
learned from Shared Unit, thereby having a positive influ-
ence on the performance of KG-MTL. Furthermore, KG-
MTL-L achieves the same performance as our KG-MTL in
terms of convergence with slower speed, which can further
prove that the cross operation of Shared Unit is clearly help-
ful to the speed of model convergence. The reason might
be that the cross operation can make the fused features
smoother and sparser, which speeds up the training process
of KG-MTL. Meanwhile, compared with KG-MTL, we also
notice that KG-MTL-C shows the comparative performance
on convergence, which indicates that the linear transfor-
mation in Shared Unit can lower the convergence level of
our model. Similarly, as shown in Fig. 4, KG-MTL achieves
at least up to 1.6% and 1.1% improvements on the two
datasets with comparison to the best baseline method. These
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KG-MTL
Metabolisma
Blood
Cardiovascular
Dermatological
Genitourinary
Hormonal
Antiinfectives
Antineoplastic
Musculoskeletal
Antiparasitic
Respiratory
Sensory
Various
Nervous

Cross-Stitch
Metabolisma
Blood
Cardiovascular
Dermatological
Genitourinary
Hormonal
Antiinfectives
Antineoplastic
Musculoskeletal
Antiparasitic
Respiratory
Sensory
Various
Nervous

Fig. 5. The distribution of drug representation in the embedding space
on DrugBank dataset.

findings further validate the stability and effectiveness of
our proposed Shared Unit in KG-MTL.

To examine the effectiveness of our proposed Shared Unit
with comparison to the simple multi-task learning method
(i.e., Cross-Stitch), we further study the changes in the
embedding space of drug representations learned from two
methods. Specifically, the DrugBank dataset is preprocessed
and only drugs that have Anatomical Therapeutic Chemical
(ATC) code are kept. This procedure yields 1,623 drugs.
Then we visualize the embedding vector of drug represen-
tations learned by KG-MTL and Cross-Stitch, respectively,
by using PCA (Principal Component Analysis) tool. Fig. 5
shows the distribution of drug representation in the embed-
ding space on DrugBank dataset. As shown in Fig. 5, the 2D
representations of learned embedding vectors for 14 drug
types are grouped by the first level of ATC classification
system codes. Semantically, similar ATC drugs should be
mapped to nearby regions on the embedding space. We can
observe that our proposed KG-MTL achieves better perfor-
mance than Cross-Stitch on grouping drug types. For exam-
ple, there are 312 Nervous drugs that account for the largest
proportion (19.2%) in the dataset, our method can accurately
group the Nervous drugs with comparison to Cross-Stitch.
Therefore, the proposed KG-MTL performs better ability
than Cross-Stitch on extracting the useful features from
drugs, which results in the superior performance of our
method. The reason may be that KG-MTL can effectively
leverage the semantic relations and molecular structures of
drugs by using the cross operation of the Shared Unit. while

the Cross-Stitch directly adopted four trainable parameters
to learn the weighted task-independent features, which can
not capture high-order information.

We believe that KG-MTL can obtain superior representa-
tions through more fine-grained feature fusing. Specifically,
the Cross-Stitch learns a combination of shared and task-
specific representations between two tasks by designing a
unit. Given two inputs xA and xB from layer l for both
tasks, the Cross-Stitch learns linear combinations x̃A and
x̃B of both the inputs. The formula at location (i, j) in the
map function is as follows[

x̃ijA
x̃ijB

]
=

[
αAA αAB
αBA αBB

] [
xijA
xijB

]
, (11)

where αAA, αAB , αBA, αBB are trainable transfer weights
of representations between task A and task B. Meanwhile,
the cross operation of Shared Unit (see details in Section 3.2.3)
is defined as follows

e
(l+1)
di

= Cd ⊗ ŵdd + Cg ⊗ ŵgd + bd, (12)

e(l+1)
gi = Cd ⊗ ŵgg + Cg ⊗ ŵdg + bg, (13)

where Cd = C , Cg = CT and C is defined as

C = e
′

d(e
′

g)
T =


e

′(1)
d e

′(1)
g · · · e

′(1)
d e

′(dim)
g

...
...

...
e

′(dim)
d e

′(1)
g · · · e

′(dim)
d e

′(dim)
g

 , (14)

where e′d and e′g are the output of the linear operation. If
we ignore all biases in Eq. (12-13), the cross operation can
be represented as follows[

e
(l+1)
di

e
(l+1)
gi

]
=

[
e′d(e

′
g)

T ⊗ ŵdd + e′g(e
′
d)

T ⊗ ŵgd

e′d(e
′
g)

T ⊗ ŵgg + e′g(e
′
d)

T ⊗ ŵdg

]
=

[
(e′g)

T ⊗ ŵdd (e′d)
T ⊗ ŵgd

(e′g)
T ⊗ ŵgg (e′d)

T ⊗ ŵdg

] [
e′d
e′g

]
.

(15)

The transfer matrix in Eq. (15) serves as the Cross-Stitch in
Eq. (11). Like Cross-Stitch, we can observe that KG-MTL
can make certain layers task-specific by setting (e′d)

T⊗ ŵgd

(i.e., αAB) or (e′g)
T ⊗ ŵgg (i.e., αBA) to zero, or choose

a more shared representation by assigning a higher value
to them. However, we can see the transfer matrix in KG-
MTL is more fine-grained than in Cross-Stitch, because the
transfer weights from scalars to dot products of two vectors.
Therefore, we can capture more drug information from
knowledge graph and molecular structure by Shared Unit,
which leads to show better visualization.

4.8 Parameter Sensitivity Analysis

In this experiment, we test the impact of the major hyper-
parameters of KG-MTL.
Impact of Negative Sample Size in KG. As shown in Fig.
6(a), we vary different negative sample size r and observe
that the optimal solution can be reached when r=4. This is
because KG-MTL can learn more useful information with
enough negative samples. However, as the proportion of
negative samples increases, some potential positive triples
may be treated as negative samples that result in negative
effect for the performance of KG-MTL.
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Fig. 6. Results of KG-MTL with varying settings of r, dim, N and Shared Unit on DrugCentral and C.elegans datasets respectively.
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(a) Results of DTI task on non-redundant DrugCentral
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(b) Results of CPI task on non-redundant human dataset.

Fig. 7. The performance of KG-MTL and KG-MTL-S evaluated on Drug-
Central and human by removing the redundancy between them.

Impact of Dimension of Entity Embedding. We investigate
the influence of dimension of entity embedding dim by
varying it from 32 to 300. Fig. 6(b) illustrates that our
method achieves the best AUC when dim=128 in the DTI
task, while the best result can be obtained when dim=64
in CPI task. The reason could be that the embedding with
relatively larger dim can represent much information from
large-scale KG in the DTI task, while the molecular features
with higher dim will lead to information redundancy in CPI
task.
Impact of Various Number and Settings of Shared Unit. As
shown in Fig. 6(c), we investigate the effect of the number
of Shared Unit N by varying it from 1 to 4 (Recall the Shared

(a) ROC curves of KG-MTL and KG-MTL-S on BindingDB.

(b) P-R curves of KG-MTL and KG-MTL-S on BindingDB.

Fig. 8. The performance of KG-MTL and KG-MTL-S (including KG-MTL-
Sdti and KG-MTL-Scpi) tested on BindingDB dataset.

Unit in Section 3.2). We find that KG-MTL achieves worse
performance in CPI task as N increases, while it obtains the
stable AUC score in DTI task. This implies that the shared
features in lower layer will be more beneficial to improving
the performance of model. Meanwhile, Fig. 6(d) shows the
influence of Shared Unit with different settings. We observe
that the Shared Unit with both linear and cross operations
achieves better performance than other operations (e.g.,
Cross-Stitch [26]). This proves that KG-MTL can effectively
leverage the semantic relations and molecular structures
of drugs by using Shared Unit in high-order feature space,
while Cross-Stitch(resp., KG-MTL-L) directly adopted four
trainable parameters to share task-independent features.
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Fig. 9. The results of KG-MTL and KG-MTL-S validated on unbalanced
DrugCentral (top) and human (bottom) datasets.

4.9 Analysis of Data Redundancy
In the process of model training for DTI and CPI tasks,
KG-MTL simultaneously fits the datasets (DrugCentral and
human datasets) used in both tasks. However, some sam-
ples that existed in multiple datasets may have a positive
influence on the performance of the model, and here we
call it data leak. For example, one drug-target pair that
originally belongs to the training set of DrugCentral may
be a sample in the test set of human dataset, which can
slightly improve the performance of the CPI task. And we
statistically find that there is a slight redundancy between
human/DrugBank (1.2%) and human/DrugCentral (0.9%),
but no redundancy exists in C.elegans dataset. Thus, owing
to the influence of data leak in our used datasets, we remove
the redundant samples between human and DrugCentral to
re-evaluate the performance of our model. As shown in Fig.
7, we observe that KG-MTL still outperforms KG-MTL-Sdti
and KG-MTL-Scpi on ACC, AUC, and AUPR scores across
two tasks. This may be because the features obtained from
relational knowledge graph by the Shared Unit have stronger
robustness and generalization, which can ignore outliers
and alleviate the impact of the data leak to some extent.

.

4.10 Generalization of KG-MTL
To validate the effectiveness and generalization of our pro-
posed Shared Unit in multi tasks, we adopt an external
dataset BindingDB [50] to evaluate the performance of KG-
MTL and the result is shown in Fig. 8. Following earlier

TABLE 3
The detailed description of preprocessed dataset.

Number/Dataset DrugBank human

All drug-target pairs 33,483 12,452
Test set 1,653 (4.93%) 1,118 (8.97%)

TABLE 4
Results of KG-MTL and its variants in test set. First/second row of each

method corresponds to the results on DrugBank and Human
respectively.

ACC AUC AUPR

KG-MTL for dti 0.847 0.883 0.879
KG-MTL for cpi 0.760 0.738 0.714
KG-MTL-S(dti) 0.798 0.837 0.829
KG-MTL-S(cpi) 0.731 0.726 0.702

work [42], we collect the positive DTI/CPI pairs that satisfy
kd < 30 units and sample the same number of negative
DTI/CPI pairs as the positive samples for external vali-
dation set. We plot the ROC curves of KG-MTL and KG-
MTL-S in Fig. 8(a). We find that KG-MTL achieves superior
performance over the single-task models (i.e., KG-MTL-Sdti
and KG-MTL-Scpi). Moreover, we also plot the precision-
recall curves in Fig. 8(b). Specifically, KG-MTL achieves
higher AUPR results of 7.4% for DTI task and 4.6% for CPI
tasks, respectively, which indicates that our proposed KG-
MTL is more beneficial to predict the unknown molecular
interactions than single-task models. The results demon-
strate that KG-MTL can learn more generalized features of
drugs via the Shared Unit between multiple tasks.

However, the number of known DTI or CPI pairs is much
smaller than the unknown one, which leads to a serious
imbalance in two datasets. To mimic the situation, we per-
form a cross-validation test that the negative samples in the
test set contain nine times more than the positive ones [18].
Thus, the positive samples (i.e., known DTIs/CPIs) occupy
only 10% of the whole dataset in the setting of unbalanced
datasets. In previous works [51], [52], as the area under the roc
curve (AUC) may be an over-optimistic metric to evaluate
the performance of model in highly imbalanced dataset,
here we add the AUPR metric to give a better evaluation in
this scenario. As shown in Fig. 9, we observe that the AUPR
results of KG-MTL and KG-MTL-S are declined on the
unbalanced dataset with comparison to their performance
on DrugCentral and human datasets, but we also notice that
KG-MTL still achieves a higher AUPR score than the single-
task model (i.e., KG-MTL-S). This further implies that multi-
task learning of our KG-MTL results in a quick adaptation
to predict unknown DTIs/CPIs on the sparse datasets and
a much more significant improvement in generalization.
Thus, KG-MTL indeed narrows the gap by learning how
to make adaptations on the unbalanced dataset.

To further test the generalization of our proposed
method on DTI and CPI tasks, we conduct a comparison
experiment on two new test data with a reasonable split.
Specifically, we select those drug-target pairs whose drug
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TABLE 5
Candidate drugs and possible interaction proteins related to COVID-19. Note that NA represents no evidence to identify the fact.

DrugBank ID Drug Name Prediction Score Target Active protein Evidence

DB00619 Imatinib 1.0 TNF-α CPE,AlphaLISA, CoV-PPE,MERS-PPE NCT04338698
DB12612 Ozanimod 0.99 TNF-α ACE2,AlphaLISA,CoV-PPE,MERS-PPE NCT04405102
DB00198 Oseltamivir 0.99 TNF-α NA NCT04338698
DB09552 Tonzonium 0.99 TNF-α AlphaLISA,3CL enzymatic activity,MERS-PPE NA
DB09220 Nicorandil 0.98 TNF-α NA PMC7436472

DB01268 Sunitinib 0.99 IL-6 AlphaLISA,MERS-PPE PMC7550610
DB00811 Ribavirin 0.99 IL-6 NA NCT04494399
DB01143 Amifostone 0.98 IL-6 3CL enzymatic activity,CoV-PPE PMC3661204
DB09079 Nintedanib 0.98 IL-6 ACE2,CoV-PPE,CPE,AlphaLISA PMC7969149
DB00284 Acarbose 0.98 IL-6 NA PMC3832586

appears only once into two test sets from DrugBank (for DTI
task) and human (for CPI task) datasets, respectively. The
detailed description of the preprocessed dataset is shown
in Table 3. Table 4 illustrates the comparison result of our
model and its variants (i.e., single-task model denoted as
KG-MTL-S) on two tasks. From this table, we can find that
the proposed KG-MTL significantly outperforms the single-
task model across the two datasets. More specifically, KG-
MTL achieves at least 2.9% on ACC, 1.2% on AUC, and 1.2%
on AUPR higher performance than other methods, which
further proves that KG-MTL can improve the predictive on
unseen data. This is due to the fact that the proposed Shared
Unit boosts the generalization ability of our model.

4.11 Case Study: COVID-19

Lastly, we further present a case study to show the potential
predictive ability of KG-MTL. Table 5 shows the top 10
drugs that predicted by our model are selected as the
candidate agents binding to TNF-α and IL-6. We observe
that nine drugs can be confirmed. For example, Nico-
randil (ID:PMC7436472) and Acarbose (ID:PMC3832586)
have been reported by PubMed. Meanwhile, Imatinib and
Ribavirin are in clinical trials, and the evidence can be
checked by their NCT number. In addition, we use Drug-
Central REDIAL 2020 [53] toolkit to evaluate the drug
activities to the Sars-CoV-2 related targets. And we also
find that these drugs have high ACE22 enzymatic activity
or 3CL3 enzymatic activity for COVID-19 (e.g., Amifostone,
Ozanimod), which further proves the superiority of the KG-
MTL. The knowledge graph enhanced multi-task learning
framework is a promising tool for predicting the potential
drug-target interactions.

5 CONCLUSION

Molecular interaction prediction (e.g., DTI prediction and
CPI prediction) between targets plays a key role in many ap-
plications, including pharmacology and clinical application.
In this paper, we focus on molecular interaction prediction
that demands the model to capture the features of drug and
the interactions related to targets. However, previous works
represent drug features with insufficient information and

2. https://opendata.ncats.nih.gov/covid19/assay?aid=6
3. https://opendata.ncats.nih.gov/covid19/assay?aid=9

ignore semantic information in knowledge graph. To ad-
dress this limitation, we propose a novel framework named
KG-MTL that develops a novel shared unit in the view of
multi-task learning, to capture the information from both
molecular graph of compounds and semantic relations of
drug entities of knowledge graph respectively. Experimental
results on real-world datasets show that KG-MTL could
improve the performance on the drug-target interaction pre-
diction and compound-protein interaction prediction tasks.
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[25] S. K. Mohamed, V. Nováček, and A. Nounu, “Discovering protein
drug targets using knowledge graph embeddings,” Bioinformatics,
vol. 36, no. 2, pp. 603–610, 2020.

[26] I. Misra, A. Shrivastava, A. Gupta, and M. Hebert, “Cross-stitch
networks for multi-task learning,” in IEEE Conference on Computer
Vision and Pattern Recognition, 2016, pp. 3994–4003.

[27] J. Xu, J. Zhou, P.-N. Tan, X. Liu, and L. Luo, “Spatio-temporal
multi-task learning via tensor decomposition,” IEEE Transactions
on Knowledge and Data Engineering, vol. 33, no. 6, pp. 2764–2775,
2019.

[28] H. Xiao, Y. Chen, and X. Shi, “Knowledge graph embedding
based on multi-view clustering framework,” IEEE Transactions on
Knowledge and Data Engineering, vol. 33, no. 2, pp. 585–596, 2019.

[29] S. Li, F. Wan, H. Shu, T. Jiang, D. Zhao, and J. Zeng, “Monn: a
multi-objective neural network for predicting compound-protein
interactions and affinities,” Cell Systems, vol. 10, no. 4, pp. 308–322,
2020.

[30] G. Landrum, “Rdkit: Open-source cheminformatics,” 2006.
[31] V. N. Ioannidis, X. Song, S. Manchanda, M. Li, X. Pan,

D. Zheng, X. Ning, X. Zeng, and G. Karypis, “Drkg
- drug repurposing knowledge graph for covid-19,”
https://github.com/gnn4dr/DRKG/, 2020.

[32] J. Chen, T. Ma, and C. Xiao, “FastGCN: Fast learning with graph
convolutional networks via importance sampling,” in International
Conference on Learning Representations, 2018, pp. 1–15.

[33] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. Van Den Berg, I. Titov, and
M. Welling, “Modeling relational data with graph convolutional
networks,” in European Semantic Web Conference, 2018, pp. 593–607.

[34] T. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” ArXiv, vol. abs/1609.02907, 2017.

[35] Z. Quan, Y. Guo, X. Lin, Z.-J. Wang, and X. Zeng, “Graphcpi:
Graph neural representation learning for compound-protein in-
teraction,” in IEEE International Conference on Bioinformatics and
Biomedicine, 2019, pp. 717–722.

[36] B. Dzmitry, C. Kyunghyun, and Y. Bengio, “Neural machine
translation by jointly learning to align and translate,” in The
International Conference on Learning Representations, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceedings, 2014.

[37] R. Wang, B. Fu, G. Fu, and M. Wang, “Deep & cross network for ad
click predictions,” in Proceedings of the ADKDD’17, 2017, pp. 1–7.

[38] A. Kendall, Y. Gal, and R. Cipolla, “Multi-task learning using
uncertainty to weigh losses for scene geometry and semantics,” in
IEEE Conference on Computer Vision and Pattern Recognition, 2018,
pp. 7482–7491.

[39] H. Li, Y. Wang, Z. Lyu, and J. Shi, “Multi-task learning for
recommendation over heterogeneous information network,” IEEE
Transactions on Knowledge and Data Engineering, vol. 34, no. 2, pp.
789–802, 2020.

[40] D. S. Wishart, Y. D. Feunang, A. C. Guo, E. J. Lo, A. Marcu, J. R.
Grant, T. Sajed, D. Johnson, C. Li, Z. Sayeeda et al., “Drugbank 5.0:
a major update to the drugbank database for 2018,” Nucleic Acids
Research, vol. 46, p. D1074–D1082, 2018.

[41] O. Ursu, J. Holmes, J. Knockel, C. G. Bologa, J. J. Yang, S. L.
Mathias, S. J. Nelson, and T. I. Oprea, “DrugCentral: online drug
compendium,” Nucleic Acids Research, vol. 45, no. D1, pp. D932–
D939, 2016.

[42] K. Huang, C. Xiao, L. Glass, and J. Sun, “Moltrans: Molecular
interaction transformer for drug target interaction prediction,”
Bioinformatics, pp. 1–7, 2020.

[43] M. Wen, Z. Zhang, S. Niu, H. Sha, R. Yang, Y. Yun, and H. Lu,
“Deep learning-based drug-target interaction prediction,” Journal
of proteome research, vol. 16, no. 4, pp. 1401–1409, 2017.

[44] I. Lee, J. Keum, and H. Nam, “Deepconv-dti: Prediction of drug-
target interactions via deep learning with convolution on protein
sequences,” PLoS Computational Biology, vol. 15, no. 6, p. e1007129,
2019.

[45] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and
O. Yakhnenko, “Translating embeddings for modeling multi-
relational data,” Advances in neural information processing systems,
vol. 26, 2013.

[46] B. Yang, W.-t. Yih, X. He, J. Gao, and L. Deng, “Embedding entities
and relations for learning and inference in knowledge bases,”
arXiv preprint arXiv:1412.6575, 2014.

[47] F. Costa and K. De Grave, “Fast neighborhood subgraph pairwise
distance kernel,” in International Conference on Machine Learning,
2010, pp. 255–262.

[48] Y. Zhao, A. Zhang, R. Xie, K. Liu, and X. Wang, “Connecting
embeddings for knowledge graph entity typing,” in Association
for Computational Linguistics, 2020, pp. 6419–6428.

[49] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[50] T. Liu, Y. Lin, X. Wen, R. N. Jorissen, and M. K. Gilson, “Bind-
ingdb: a web-accessible database of experimentally determined
protein–ligand binding affinities,” Nucleic acids research, vol. 35,
no. suppl 1, pp. D198–D201, 2007.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3188154

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: XiangTan University. Downloaded on September 11,2022 at 03:57:07 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES,XXX, XXX, XXX 14

[51] T. van Laarhoven, S. B. Nabuurs, and E. Marchiori, “Gaussian
interaction profile kernels for predicting drug–target interaction,”
Bioinformatics, vol. 27, no. 21, pp. 3036–3043, 2011.

[52] J. Davis and M. Goadrich, “The relationship between precision-
recall and roc curves,” in International conference on Machine learn-
ing, 2006, pp. 233–240.

[53] G. Bocci, S. Verma, M. M. Hassan, J. Holmes, J. J. Yang, S. Sirimulla,
T. I. Oprea et al., “A machine learning platform to estimate anti-
sars-cov-2 activities,” Nature Machine Intelligence, pp. 1–9, 2021.

Tengfei Ma received the BS degree from School
of Software and Applied Science and Technol-
ogy, Zhengzhou University, China, in 2019. He is
a postgraduate student at the School of Informa-
tion Science and Engineering, Hunan University.
His research interests include drug discovery,
graph neural network, knowledge graph repre-
sentation learning. He has published several re-
search works in these fields including IJCAI, J.
Proteome Res, Bioinformatics, etc.

Xuan Lin is currently a lecturer at the College of
Computer Science, Xiangtan University, Xiang-
tan, China. Before joining Xiangtan University,
he received the PhD degree in computer sci-
ence from Hunan University, Changsha, China,
in 2021. He was visiting scholar in University
of Illinois at Chicago, from 2019 to 2020. His
main research interests include machine learn-
ing, graph neural networks and bioinformatics.
He has published several research papers in
these fields including IJCAI, AAAI, ECAI, BIBM,

Briefings in Bioinformatics, etc.

Bosheng Song received the Ph.D. degree in
control science and engineering from Huazhong
University of Science and Technology, Wuhan,
China, in 2015. He spent 18 months working
with the Research Group on Natural Computing,
University of Seville, Seville, Spain, from 2013
to 2015. He was a Postdoctoral Researcher with
the School of Automation, Huazhong University
of Science and Technology, from 2016 to 2019.
He is currently an Associate Professor with the
College of Information Science and Engineering,

Hunan University, Changsha, China. His current research interests in-
clude membrane computing and bioinformatics.

Philip S Yu received the B.S. Degree in E.E.
from National Taiwan University, the M.S. and
Ph.D. degrees in E.E. from Stanford University,
and the M.B.A. degree from New York University.
He is a Distinguished Professor in Computer
Science at the University of Illinois at Chicago
and also holds the Wexler Chair in Information
Technology. His research interest is on big data,
including data mining, data stream, database
and privacy. He has published more than 1,000
papers in refereed journals and conferences. He

holds or has applied for more than 300 US patents. He received the
ICDM 2013 10-year Highest-Impact Paper Award, and the EDBT Test of
Time Award (2014). He is a Fellow of the ACM and the IEEE.

Xiangxiang Zeng is an Yuelu distinguished Pro-
fessor with the College of Information Science
and Engineering, Hunan University, Changsha,
China. Before joining Hunan University in 2019,
he was with Department of Computer Science in
Xiamen University. He received his Ph.D. degree
in system engineering from Huazhong Univer-
sity of Science and Technology, China, in 2011.
He was visiting scholar in Indiana University,
The Chinese University of Hongkong, Oklahoma
State University, etc. His main research interests

include computational intelligence, graph neural networks and bioinfor-
matics. He is a senior member of the IEEE.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3188154

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: XiangTan University. Downloaded on September 11,2022 at 03:57:07 UTC from IEEE Xplore.  Restrictions apply. 


