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Abstract

Large language models (LLMs) are widely ap-
plied in various natural language processing
tasks such as question answering and machine
translation. However, due to the lack of labeled
data and the difficulty of manual annotation
for biochemical properties, the performance
for molecule generation tasks is still limited,
especially for tasks involving multi-properties
constraints. In this work, we present a two-step
framework PEIT (Property Enhanced Instruc-
tion Tuning) to improve LLMs for molecular-
related tasks. In the first step, we use tex-
tual descriptions, SMILES, and biochemical
properties as multimodal inputs to pre-train a
model called PEIT-GEN, by aligning multi-
modal representations to synthesize instruc-
tion data. In the second step, we fine-tune
existing open-source LLMs with the synthe-
sized data, the resulting PEIT-LLM can handle
molecule captioning, text-based molecule gen-
eration, molecular property prediction, and our
newly proposed multi-constraint molecule gen-
eration tasks. Experimental results show that
our pre-trained PEIT-GEN outperforms MolT5
and BioT5 in molecule captioning, demonstrat-
ing modalities align well between textual de-
scriptions, structures, and biochemical proper-
ties. Furthermore, PEIT-LLM shows promis-
ing improvements in multi-task molecule gen-
eration, proving the scalability of the PEIT
framework for various molecular tasks. We re-
lease the code, constructed instruction data, and
model checkpoints in https://github.com/
chenlong164/PEIT.

1 Introduction

Large language models (LLMs) such as GPT-
4 (OpenAI, 2023), PaLM (Chowdhery et al., 2023)
and LLaMa (Touvron et al., 2023; Dubey et al.,
2024) have revolutionized the landscape of arti-
ficial intelligence and natural language process-
ing (NLP), allowing machines to understand and

*Corresponding author.

generate human language with remarkable flu-
ency and coherence. Based on encoded world
knowledge (Petroni et al., 2019) and powerful
instruct-following (Zhang et al., 2023) capabilities
of LLMs, recent work has successfully used LLM
for molecular-related tasks, achieving promising
results (Fang et al., 2023; Zhang et al., 2024).

Despite the success, LLMs still have limitations
in tasks involving the generation of molecules with
restricted properties, therefore limiting its potential
applications such as drug discovery (Zhavoronkov,
2018; Elton et al., 2019). The challenges for tack-
ling such tasks mainly lie in three aspects: (1) Ex-
isting studies have shown limitations of LLMs in
understanding molecular representations (Grisoni,
2023), which makes it more challenging for han-
dling such tasks with precise properties; (2) While
there is some known SMILES-property pairing
data, it often remains limited to predicting a sin-
gle property and lacks datasets encompassing a
wide range of properties (Wu et al., 2018). More-
over, most of these datasets do not include pre-
cisely described textual data, making it challenging
to identify accurate tri-modal data pairs (Krenn
et al., 2020); (3) To our knowledge, there are no
suitable datasets or evaluation methods for multi-
constraint molecule generation using LLMs, which
poses challenges in standardizing and assessing
such molecule generation tasks with these mod-
els (Jin et al., 2018; Elton et al., 2019).

To address these challenges, we propose a frame-
work called PEIT (Property Enhanced Instruction
Tuning) to generate multi-modal molecular instruc-
tion datasets in bulk, aiming to enhance the capa-
bilities of LLMs in multi-task molecule generation.
Using the PEIT framework, our pre-trained model
can handle both general tasks (e.g., molecule cap-
tioning (Edwards et al., 2022)) and property-related
tasks such as property prediction (Chang and Ye,
2024). This makes it suitable for constructing data
to evaluate multi-constraint molecule generation
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Figure 1: Left: Overall PEIT framework. We first pre-train the PEIT-GEN and construct instruction data via
template filling. Then we fine-tune the open-source LLMs through instruction tuning, the resulting PEIT-LLM is
used for multi-task molecule generation. Right: The process of PEIT-GEN pre-training, see details in section 3.2.

capabilities and for serving as instruction tuning
data to improve existing open-source LLMs.

The overall structure of the proposed PEIT
framework is shown in the left of Figure 1. Specif-
ically, it consists of two components: (1) We pre-
train a model called PEIT-GEN through multi-
modal representation alignment, which integrates
text-based (molecular descriptions), structure-
based (SMILES), and property-based (property-
value pairs) information to generate diverse un-
structured text, sequence, and property data; (2)
By using the synthesized instruction data, we fine-
tune open-source LLMs and develop PEIT-LLM,
which can be applied to various molecule genera-
tion tasks mentioned above, including our proposed
multi-constraint molecule generation, which simu-
lates real-world drug discovery scenarios where the
generation of drug molecules is guided by multiple
properties constraints.

Experimental results demonstrate that our pre-
trained PEIT-GEN achieves competitive or bet-
ter results in molecule captioning tasks, compar-
ing to a variety of biomolecular models includ-
ing MolT5 (Edwards et al., 2022), BioT5 (Pei
et al., 2023), GIT-Mol (Liu et al., 2024),
MolXPT (Liu et al., 2023b). Additionally, PEIT-
LLM based on LLaMa3.1-8B (Dubey et al.,
2024) exhibits superior performance compared
to both specialized models (BioT5+ (Pei et al.,
2024) and Mol-Instructions (Fang et al., 2023))
and general-purpose LLMs (LLaMa3 (Touvron
et al., 2023), LLaMa3.1 (Dubey et al., 2024), and
Qwen2.5 (Yang et al., 2024)) in molecular property

prediction and our newly proposed multi-constraint
molecule generation tasks.

Our contributions can be summarized as follows:

• We propose PEIT, a novel framework that en-
ables existing open-source LLMs to align the
textual descriptions, SMILES sequences, and
biochemical properties through multi-modal
representation alignment, thereby facilitating
multi-task molecule generation.

• PEIT achieves promising results in various
benchmarks. It surpasses the baselines at least
by 2.3% on BLEU-2 for molecule caption-
ing task. Moreover, in text-based molecule
generation task, PEIT shows a considerable
advantage of 21.76 Levenshtein over the base-
lines. For five-property constraint molecule
generation, PEIT outperforms the baselines in
terms of RMSE and R2, respectively.

• We conduct ablation studies to show PEIT’s
effectiveness of incorporating multi-modal
features into existing open-source LLMs for
multi-task molecule generation. Additionally,
our quantitative analysis shows that various
modeling choices, including different objec-
tives and SFT steps, help improve the LLM’s
potential to accelerate the drug discovery.

2 Related Work

Molecule generation. The goal is to design
and generate molecules that meet specific proper-
ties, deep learning models have emerged and they
are mainly categorized as follows: (1) text-based
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molecule generation that uses textual descriptions
to generate molecules that match the given descrip-
tion (Liu et al., 2023b, 2024). MolT5 (Edwards
et al., 2022) was the first proposed to realize trans-
lation between textual description and molecular
SMILES. BioT5 aims to enhance molecular under-
standing by incorporating protein modality. They
also perform molecule captioning, which is equiv-
alent to the inverse task of text-based molecule
generation. (2) property-guided molecule genera-
tion is the inverse process of molecular property
prediction, where molecules are generated based
on specific biochemical property constraints. No-
tably, SPMM (Chang and Ye, 2024) was the first
to establish a connection between 53 biochemical
properties and SMILES sequences, making multi-
constraint molecule generation possible. However,
few existing models can simultaneously perform
text-based or multi-constraint molecule generation
and molecule captioning.
Molecular property prediction. Deep learning
models have been developed for molecular prop-
erty prediction each with their own advantages and
limitations. Transformer-based models design at-
tention mechanism to capture contextual contexts
from large-scale SMILES sequences (Ross et al.,
2022). The molecular graph can be directly ob-
tained from SMILES sequences via RDKit (Lan-
drum et al., 2013). Graph-based models develop
diverse graph neural networks to learn differen-
tiable representations (Wang et al., 2022). However,
these methods ignore the potential that incorporat-
ing textual knowledge enables to realize new drug
design objectives (Zeng et al., 2022; Liu et al.,
2023a). Recently, a novel molecular pre-trained
model named SPMM (Chang and Ye, 2024) that
extends the application of multimodal pre-training
approaches by aligning molecular structures and
biochemical properties. This paper extends the mul-
timodal pre-training to patterns of text-sequence-
property triplets, which is defined flexibly by LLM-
understandable textual prompts.
Instruction tuning. Specialized datasets construc-
tion seems the effective way to enable LLMs to
better perform the molecular-related tasks. For
instance, Mol-Instructions (Fang et al., 2023) pro-
vides a large-scale biomolecular instruction dataset
designed for LLMs, which contains a variety of
instruction data ranging from small molecules,
proteins, and biomolecular texts. Additionally,
BioT5+ (Pei et al., 2024) integrates IUPAC names,
extensive biological texts, and molecular data

through multi-task instruction tuning, providing
more comprehensive insights in the fields of drug
discovery. How to generate reliable data related
to molecular knowledge remains a challenge of
instruction tuning for existing open source LLMs.

3 Method

3.1 Overview of PEIT Framework

The overview of PEIT framework is shown in Fig-
ure 1 (left), which consists of PEIT-GEN and PEIT-
LLM. In PEIT-GEN, we generate a large number
of “SMILES-text” and “SMILES-property” pairs to
serve as multi-modal data. Then we design multiple
multi-modal alignment objectives to pre-train PEIT-
GEN. In PEIT-LLM, by using the pre-trained PEIT-
GEN, we can predict a large number of triplets to
generate more diverse SMILES inputs, and then
construct diverse instruction data based on template
filling. By utilizing the synthesized instruction data,
PEIT-LLM enables the supervised fine-tuning of
open-source LLMs including LLaMa (Dubey et al.,
2024) and Qwen (Yang et al., 2024), enhancing the
capabilities for multi-task molecule generation.

3.2 Pre-training of PEIT-GEN

The pre-training stage of PEIT-GEN is shown in
the right of Figure 1. For a given molecule, differ-
ent representations offer unique and complemen-
tary features, which are crucial for comprehensive
molecule understanding. PEIT-GEN aims to in-
tegrate information from three modalities simul-
taneously, including textual information T (text),
molecular structure S (SMILES), and biochemi-
cal properties P (property-value). Such ability can
help synthesizing sufficient instruction data for fur-
ther enhancing the ability of LLMs. In particular,
PEIT-GEN consists of three Transformer encoders
Enct, Encs, Encp and two decoders Dect, Decp,
and we design different training objectives to align
features from different modalities.
Cross-modal representation matching. We lever-
age pre-trained models SciBERT (Beltagy et al.,
2019) as trainable Enct for encoding textual data,
BERT (Devlin et al., 2019) as Encs and Encp for
encoding SMILES and properties. Then we obtain
feature representations across all three modalities,
establishing the foundation for feature alignment.

We propose cross-modal representation match-
ing to align the representations from different per-
spectives by the same molecule. In particular, we
introduce the SMILES-text matching loss Lst

match
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and the SMILES-property matching loss Lsp
match,

which serve as objectives for training the encoders.
In this way, the model can effectively learn cross-
modal relationships and improve performance in
multi-modal tasks by aligning the feature spaces.
The matching loss is calculated as follows:

Lst
match = ℓCE

(
ystmatch,MLP(Encs(S)⊕ Enct(T ))

)
,
(1)

Lsp
match = ℓCE

(
yspmatch,MLP(Encs(S)⊕ Encp(P))

)
,

(2)
where ystmatch and yspmatch are labels as 0 or 1, indi-
cating whether the corresponding SMILES-text or
SMILES-property pairs are matching. Enc(·) in-
dicates the representation of the data (i.e., [CLS]
token of Transformer encoder), ⊕ is the concatena-
tion operation, and MLP(·) is the trainable multi-
layer perception. The encoders are optimized by
the cross-entropy loss ℓCE using the given data from
different modalities.
Multi-modal contrastive learning. The represen-
tation matching can be viewed as an explicit 2-
way classification training. We further utilize con-
trastive learning to directly enhancing the represen-
tation by pulling semantically close neighbors to-
gether and pushing apart non-neighbors from data
of different modalities. To calculate the similarity
between the encoded features of different modali-
ties, we extract the encoded features and then com-
pute the instance-level similarities through the in-
ner product:

sim(S, T ) = (MLPs(Encs(S)))TMLPt(Enct(T )),

(3)
sim(S,P) = (MLPs(Encs(S)))TMLPp(Encp(P)),

(4)
where MLPs, MLPt and MLPp are multi-layer
perceptions applied to SMILES, text, and property
representations, respectively. Then, for the given
SMILES S, text T , and property P , we compute
the cross-modal batch-level similarities as follows:

ss2t =
exp(sim(S,T )/τ)∑M
i=1 exp(sim(S,Ti)/τ)

, (5)

ss2p =
exp(sim(S,P)/τ)∑N

i=1 exp(sim(S,Pi)/τ)
, (6)

where M and N represent the total number of texts
and property in the batch of data pairs, respectively.
τ is the temperature controlling the sharpness of
the similarity. The intra-modal similarities ss2s,
sp2p, and st2t can be computed in similar manners.

Based on the cross-modal and intra-modal batch-
level similarities, the contrastive loss is formulated

by calculating the cross-entropy according to one-
hot encoded similarity vectors y, where the value
is 1 for pairs derived from the same molecule or 0
for all other combinations:

Lst
contrastive =

1

2
(ℓCE(ys2t, ss2t) + ℓCE(yt2s, st2s)

+ ℓCE(ys2s, ss2s) + ℓCE(yt2t, st2t)),
(7)

Lsp
contrastive =

1

2
(ℓCE(ys2p, ss2p) + ℓCE(yp2s, sp2s)

+ ℓCE(ys2s, ss2s) + ℓCE(yp2p, sp2p)).
(8)

Cross-modal masked language modeling. To fur-
ther strengthen the model’s capability in molecule
captioning, we employ the masked language mod-
eling (MLM; Devlin et al., 2019) to enhance the
model performance on text generation. MLM is
originally designed for the BERT encoder, which
is not specifically used for generation. We design
decoders to generate original unmasked property
and textual description sequences, under the guid-
ance of SMILES features through cross-attention.
Specifically, given a pair of text and property, the
calculation of vanilla self-attentions are as follows:

SelfAtt(T )
.
= softmax(W t

Qh(T )(W t
Kh(T ))T)W t

V h(T ),

SelfAtt(P)
.
= softmax(W p

Qh(P)(W p
Kh(P))T)W p

V h(P),

(9)
where h(·) denotes the hidden representations, WQ,
WK , and WV are the matrix for query, key, and
values among the same modality, respectively.

For text decoder Dect and property decoder
Decp, we propose cross-modal MLM objectives
which further integrates SMILES features for
masked text or property prediction via applying
cross-attention:

CrossAtt(T )
.
= softmax(W t

Qh(T )(W s
Kh(S))T)W t

V h(T ),

CrossAtt(P)
.
= softmax(W p

Qh(P)(W s
Kh(S))T)W p

V h(P).

(10)
By introducing the SMILES features in attention

layers for MLM training, we enable the model to
utilize SMILES-text and SMILES-property data
pairs to perform molecule captioning and property
prediction. The cross-modal MLM loss Lst

MLM and
Lsp

MLM are computed as follows:

Lst
MLM = −

∑N
i=1

∑n
j=1 log Prob

(
w

(i)
j | Dect(w̃

(i)
¬j); θt

)
,

(11)
Lsp

MLM = −
∑N

i=1

∑n
j=1 log Prob

(
w

(i)
j | Decp(w̃

(i)
¬j); θp

)
,

(12)
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Task MolT5 BioT5 BioT5+ MolXPT Git-Mol SPMM LLaMa, Qwen PEIT-LLM (ours)

Molecule Captioning ✓ ✓ ✓ ✓ ✓ ✗ ✓ (limited) ✓

Text-Based Molecule Generation ✓ ✓ ✓ ✓ ✓ ✗ ✓ (poor) ✓

Molecular Property Prediction ✗ ✗ ✗ ✗ ✓ ✓ ✓ (poor) ✓

Multi-Constraint Molecule Generation ✗ ✗ ✗ ✗ ✗ ✗ ✓ (poor) ✓

Table 1: Comparing PEIT-LLM with biomolecular models and general-purpose LLMs on molecular-related tasks.

where Prob is the conditional probability to predict
the word w

(i)
j in the vocabulary, N is the total num-

ber of samples, n is the number of masked words
in each sample, w̃(i)

¬j is the sequence after masking
the j-th word in the i-th sample, θt and θp are the
trainable parameters corresponding to each modal-
ity in the two decoders. For the masked language
training, we adapt a step-by-step strategy on gener-
ation task, where each step predicts the next token
based on the generated contexts. In each iteration,
the model calculates the conditional probability
of each candidate token and then selects the opti-
mal one as the output. In this way, our model can
achieve complete cross-modal generation through
multiple iterations.
Training. The overall training objective for pre-
training PEIT-GEN is to minimize the sum of all
three types of losses across three modalities:

L = Lst
match + Lsp

match + αLst
contrastive + αLsp

contrastive

+ βLst
MLM + βLsp

MLM,
(13)

where α and β are hyper-parameters for balancing
different loss terms.

3.3 Instruction Tuning for PEIT-LLM
Template Filling. The pre-trained PEIT-GEN
offers unstructured data in the format of “text-
SMILES-properties” (i.e., text-structure-property)
triplets. To obtain more task-specific data and to
adapt to the strong instruction-following abilities
of LLMs, we design templates for different down-
stream tasks, as shown in Figure 5 in Appendix A.
For instance, in the text-based molecule generation
task, we fix a general question format and then
extract molecular descriptions from unstructured
data to fill the description part of a pre-defined tem-
plate, resulting in a natural question as instructions.
The SMILES from unstructured triplets is used as
the desired response. In this way, we can generate
diverse task-specific instruction data in bulk for
subsequent instruction tuning for LLMs.
Multi-constraint molecule generation task.
Molecule generation often requires to be conducted
under multiple constraints rather than a single con-
dition. In this work, we propose a new task to

assess molecule generation through a variety of
descriptors, by comparing the alignment between
the generated molecules and specific criteria to
evaluate the generative performance of LLMs. By
using the large-scale unstructured data generated
by PEIT-GEN, we can effectively synthesize suf-
ficient data for evaluation. Specifically, we follow
SPMM (Chang and Ye, 2024) and predict 5 com-
mon properties out of the 53 available biochemi-
cal properties for diverse SMILES, including Ex-
actMolWt, MolLogP, MolWt, QED, and TPSA.
Based on the template filling, the predicted multi-
ple property-values can be used to construct data
for multi-constraint molecule generation.
Supervised fine-tuning. We select LLaMa3.1-
8B (Dubey et al., 2024) and Qwen2.5-7B (Yang
et al., 2024) as base LLMs. We then perform stan-
dard supervised fine-tuning (SFT; Ouyang et al.,
2024) by using the “instruction-response” pairs. In
practice, we construct totally 1 million instruction
data of four different tasks (i.e., molecule caption-
ing, text-based molecule generation, property pre-
diction, and multi-constraint molecule generation)
from 200k unstructured “text-SMILES-properties”
triplets obtained by PEIT-GEN.

3.4 Comparing PEIT-LLM with Biomolecular
Models and LLMs

Table 1 shows a comparison of our PEIT-LLM
with existing pre-trained models and general LLMs
on multiple molecular generation tasks. For most
of the pre-trained models such as MolT5 and
BioT5, they focus on molecule captioning and text-
based molecule generation, which can not han-
dle property-related tasks. SPMM is a special-
ized model for property prediction. However, it
lacks of generation ability due to the lack of textual
descriptions. Current LLMs such as LLaMa and
Qwen show strong performance on general NLP-
based tasks through conversations or instruction-
following. However, these general LLMs still have
limitations in tasks related to molecule generation
due to a lack of molecular knowledge. In contrast,
through fine-tuning on diverse instruction data with
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Model Data Size ↓ BLEU-2 ↑ BLEU-4 ↑ METEOR ↑ ROUGE-1 ↑ ROUGE-2 ↑ ROUGE-L ↑

MolT5-small (Edwards et al., 2022) 100M 0.513 0.398 0.492 0.567 0.412 0.501
MolT5-large (Edwards et al., 2022) 100M 0.594 0.508 0.613 0.654 0.508 0.592
BioT5 (Pei et al., 2023) 33M 0.635 0.556 0.656 0.692 0.559 0.633
GIT-Mol (Liu et al., 2024)† 4.8M 0.352 0.263 0.533 0.575 0.485 0.560
MolXPT (Liu et al., 2023b)† 30M 0.594 0.505 0.626 0.660 0.511 0.597
PEIT-GEN (ours) 0.48M 0.598 0.534 0.676 0.700 0.582 0.653

Table 2: Results on CHEBI-20 molecule captioning with different pre-trained models. †Results are reported from
papers accordingly. The best results in each column are in bold, and the second-best results are underlined.

rich molecular knowledge, PEIT-LLM can perform
multiple molecule generation tasks simultaneously.

4 Experiments

4.1 Experimental Setup
Dataset. For pre-training PEIT-GEN, we extract
approximately 480k molecular SMILES entries
from the ZINC dataset (Irwin et al., 2012) and then
generate SMILES-text pair data using MolT5 (Ed-
wards et al., 2022). Additionally, we calculate 53
biochemical property-value via RDKit, resulting
in nearly 480k "text-SMILES-properties" triplets
for pre-training. Following MolT5, we use the
CHEBI-20 dataset (Edwards et al., 2021) to evalu-
ate PEIT-GEN’s performance on molecule caption-
ing and molecular property prediction. We split the
CHEBI-20 dataset into training, validation, and test
sets with an 8:1:1 ratio, and we verify the property
values of each molecule via RDKit.

For pre-training PEIT-LLM, we utilize the 200k
tri-modal data generated by PEIT-GEN and employ
template filling to generate 200k instruction data
for each downstream task. For molecular property
prediction, we select two biochemical properties
with distinct differences for evaluation, generating
200k instruction data for each property. Finally,
we obtain a total of 1000k instruction data across
four tasks for SFT training. Similar to PEIT-GEN,
molecular property prediction tasks on PEIT-LLM
can be validated by RDKit on CHEBI-20 dataset.
Baseline Models. To demonstrate the efficacy of
PEIT-GEN and PEIT-LLM, we compare various
popular pre-trained models and LLMs including
MolT5 (Edwards et al., 2022), BioT5 (Pei et al.,
2023), BioT5+ (Pei et al., 2024), MolXPT (Liu
et al., 2023b), GIT-Mol (Liu et al., 2024),
SPMM (Chang and Ye, 2024), LLaMa3 (Tou-
vron et al., 2023), LLaMa3.1 (Dubey et al.,
2024), Qwen2.5 (Yang et al., 2024), and Mol-
Instructions (Fang et al., 2023). Details of these
baselines and evaluation metric are in Appendix B
and C, respectively.

Model Modality Data Size ↓ R2 ↑ RMSE ↓

SPMM (Chang and Ye, 2024) S, P 1.5M 0.921 0.194
PEIT-GEN (ours) S, P , T 480K 0.910 0.169

Table 3: Comparing performance of our PEIT-GEN to
SPMM on molecular property prediction.

Implementation Details. For pre-training PEIT-
GEN, we follow BERT-base (Devlin et al., 2019)
and set hidden size as 768 for three encoders. The
training batch is 16, temperature τ is 0.07, the mask
probability for computing LMLM is 0.15, and the
momentum parameter is 0.995 with AdamW opti-
mizer (Loshchilov, 2017). We pre-train PEIT-GEN
with 20 epochs and then fine-tune it on CHEBI-20
training set for 200 epochs, with a learning rate of
5e-4. For supervised fine-tuning PEIT-LLM, we
use LLaMa-Factory (Zheng et al., 2024) framework
and apply LoRA (Hu et al., 2022) fine-tuning for 6
epochs. The maximum length is 1024, batch size is
3, and the initial learning rate to 5e-5 with cosine
decay. For baselines, we use the released check-
points for evaluation. All experiments are run on
NVIDIA 4090 GPUs with 24GB memory.

4.2 Comparing PEIT-GEN with Pre-trained
Biomolecular Models

Molecule captioning. Results on CHEBI-20
molecule captioning are shown in Table 2. Our
model demonstrates superior performance in gener-
ating high-quality and relevant molecular caption.
PEIT-GEN achieved the best results in METEOR
and ROUGE, and the second-best performance in
BLEU. Notably, compared to BioT5 which per-
forms the best in BLEU, our approach requires
significantly less data. This indicates that using
domain-specific models to generate paired data for
pre-training is more efficient than single-modality
pre-training, enabling excellent performance with
much less training data.
Molecular property prediction. The performance
of PEIT-GEN in molecular property prediction is
shown in Table 3. Following SPMM, we evaluate
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Model #Params BLEU-2 ↑ BLEU-4 ↑ METEOR ↑ ROUGE-1 ↑ ROUGE-2 ↑ ROUGE-L ↑

LLaMa3 (Touvron et al., 2023) 7B 0.032 0.002 0.117 0.121 0.010 0.065
LLaMa3.1 (Dubey et al., 2024) 8B 0.042 0.004 0.121 0.140 0.019 0.095
Qwen2.5 (Yang et al., 2024) 7B 0.049 0.007 0.188 0.177 0.029 0.112
BioT5+ (Pei et al., 2024) 5.4B 0.774 0.732 0.804 0.825 0.753 0.800
Mol-Instructions (Fang et al., 2023) 8B 0.217 0.143 0.254 0.337 0.196 0.291
PEIT-LLM-Qwen2.5 (ours) 7B 0.422 0.314 0.468 0.535 0.361 0.477
PEIT-LLM-LLaMa3.1 (ours) 8B 0.425 0.316 0.475 0.541 0.370 0.489

Model #Params BLEU ↑ Validity ↑ Levenshtein ↓ MACCS FTS ↑ Morgan FTS ↑ RDKit FTS ↑

LLaMa3 (Touvron et al., 2023) 7B 0.261 0.330 45.788 0.372 0.127 0.213
LLaMa3.1 (Dubey et al., 2024) 8B 0.270 0.368 43.183 0.411 0.138 0.248
Qwen2.5 (Yang et al., 2024) 7B 0.217 0.245 50.550 0.403 0.110 0.276
BioT5+ (Pei et al., 2024) 5.4B 0.701 1.000 39.790 0.864 0.703 0.764
Mol-Instructions (Fang et al., 2023) 8B 0.345 1.000 41.367 0.412 0.147 0.231
PEIT-LLM-Qwen2.5 (ours) 7B 0.810 0.950 21.133 0.832 0.619 0.735
PEIT-LLM-LLaMa3.1 (ours) 8B 0.836 0.970 18.030 0.875 0.661 0.776

Table 4: Results on molecule captioning and text-based molecule generation with different LLMs.

on 1,000 molecules from the ZINC dataset which
were not included in the training set. Compared
to SPMM, which is specifically designed for prop-
erty prediction, PEIT-GEN achieves comparable
performance while using only one-third of the data
size across three modalities. In terms of RMSE,
PEIT-GEN outperformed SPMM, while SPMM
was slightly ahead by 0.11 percentage points in the
R2 metric. These results demonstrate that PEIT-
GEN can generate high-quality biochemical prop-
erties of molecules, highlighting the critical role of
high-quality multimodal data in advancing molecu-
lar understanding tasks.

4.3 Comparing PEIT-LLM with LLMs

Molecule captioning.
As shown in Table 4, the comparison results

show that our model outperforms general-purpose
LLMs (Qwen-2.5 and LLaMa3.1) as well as Mol-
Instructions, which utilizes a biochemical infor-
mation instruction dataset for SFT. PEIT-LLM
achieves the second-best performance in BLEU,
METEOR, and ROUGE, but still lags behind
BioT5+, which is specifically trained for molecule
captioning task. This indicates that the responses
from BioT5+ are closer to the standard answers
of CHEBI-20, while PEIT-LLM generates more
diverse responses. By comparing with Mol-
Instructions, we demonstrate the quality of gener-
ated data by PEIT-GEN and the effectiveness of our
instruction data through multi-task template-filling.
Case study is provided in Table 6 of Appendix E to
further illustrate this point.
Text-based molecule generation. The results for
text-based molecule generation on the CHEBI-20
test set are shown in Table 4. PEIT-LLM outper-

Model
MolWt PP MolLogP PP Five-Property CG

(RMSE) ↓ (RMSE) ↓ (RMSE) ↓ (R2) ↑

LLaMa3 (Touvron et al., 2023) 491.542 561.523 79.125 -0.639
LLaMa3.1 (Dubey et al., 2024) 544.517 552.521 74.646 -0.652
Qwen2.5 (Yang et al., 2024) 100.161 132.141 75.991 -0.967
Mol-Instructions (Fang et al., 2023) 72.172 1.313 71.991 -0.352
PEIT-LLM-Qwen2.5 (ours) 14.164 0.164 19.750 0.550
PEIT-LLM-LLaMa3.1 (ours) 13.918 0.141 14.212 0.613

Table 5: Results on MolWt, MolLogP property predic-
tion (PP), and five-property constraint molecule genera-
tion (CG) with different LLMs.

forms other baselines in numerical metrics such
as BLEU score, Levenshtein Distance, MACCS
Fingerprint Similarity, Morgan Fingerprint Similar-
ity, and RDKit Fingerprint Similarity. Meanwhile,
BioT5+ and Mol-Instructions show an advantage in
the Validity metric. This indicates that PEIT-LLM,
after multi-task instruction fine-tuning, has a strong
understanding of the key structural representations
of molecules as well as their textual descriptions.
Case study is provided in Table 7 of Appendix E
to further illustrate this point. This also indirectly
validates the effectiveness of the instruction data
synthesized by our proposed PEIT-GEN.
Molecular property prediction. For predicting
single property, due to the large number of prop-
erty, we selected two representative ones for pre-
diction. The property ExactMolWt with relatively
large numerical values (usually 100∼1000), and
property MolLogP with relatively small numerical
values (usually -5∼10) are shown in Table 5. The
results show that PEIT-LLM outperforms all other
LLMs in predicting specific biochemical proper-
ties, demonstrating that PEIT-LLM exhibits strong
sensitivity to molecular properties, showing ex-
cellent predictive performance for both proper-
ties with large numerical values and those with
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Figure 2: Ablation study of different objectives during
PEIT-GEN pre-training.

smaller values. This confirms the feasibility of us-
ing multi-task SFT to enhance LLMs’ understand-
ing of molecular properties and further validates
the reliability of the molecular property instruc-
tion dataset. Case study is provided in Table 8 of
Appendix E to further illustrate this point.
Multi-constraint molecule generation. Results
for our proposed multi-constraint molecule genera-
tion task is shown in Table 5. PEIT-LLM surpasses
baselines by large margin in both RMSE and R2

metrics. Case study is provided in Table 9 of Ap-
pendix E to further illustrate this point. Note that
this task requires the model to meet the demands
of multiple properties with precise values, placing
high demands on the model’s overall understand-
ing capability. General-purpose LLMs, or those
not specifically trained for this task, lack the re-
quired information storage and fitting abilities. As
demonstrated, through our property enhanced in-
struction tuning, the model gain strong molecular
understanding capabilities.

4.4 Analysis

Ablation study. Figure 2 shows the ablation study
of SMILES-text matching loss Lst

match and cross-
modal contrastive loss Lst

contrastive, which are not
considered in SPMM due to the lack of textual
description modality1. By removing these training
objectives, the performance degradation across all
metrics, with a more significant decline when both
are removed simultaneously. This demonstrates
that both Lst

match and Lst
contrastive are helpful in cross-

modal feature alignment, thereby enhancing the
performance of molecule captioning.
Impact of SFT steps. Figure 3 and Figure 4 show
the results of PEIT-LLM with different SFT steps.

1Lst
MLM and Lsp

MLM are necessary for caption generation via
decoders, thus we do not consider them in ablation study.
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Figure 3: The impact of different amount of SFT steps
for PEIT-LLM on molecule captioning.
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Figure 4: The impact of different amount of SFT steps
for PEIT-LLM on multi-constraint molecule generation.

We find that the performance steadily improved at
first few epochs, showing that the instruction data
is useful for both molecule captioning and multi-
constraint molecule generation tasks. The perfor-
mance gradually saturates around epochs 5-6. This
indicates that the LLaMa-7B model achieves op-
timal performance with 1 million instruction data,
and further training might lead to over fitting.

5 Conclusion

We propose a novel framework PEIT that aims to
enable open-source LLMs to perceive multi-modal
features for multi-task molecule generation. For
this purpose, PEIT establishes cross-modal connec-
tions among molecular structures, textual descrip-
tion, and biochemical properties through multi-
modal representation alignment. Through template
filling, PEIT can help synthesizing diverse task-
specific instruction data for LLMs. We further in-
troduce a new multi-constraint molecule generation
task that requires generating novel molecules meet-
ing multiple property constraints. Experiments
show that PEIT achieves promising performances
on molecule captioning, text-based molecule gen-
eration, and property-related tasks compared with
various biomolecular models and LLMs.
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Limitations

While PEIT is capable of achieving comparative or
better performance over existing studies, it still has
some limitations as follows: First, PEIT integrates
the pre-trained PEIT-GEN model as part of the
pipeline, so the performance of PEIT-GEN greatly
affect the overall performance of PEIT-LLM. Sec-
ond, PEIT-GEN uses three types of modality to con-
struct the instruction data. However, some modal-
ities data (e.g., knowledge graph and molecular
images) might be more crucial than sequences for
the molecular-related task. As a result, exploring
the different modalities might lead to a different
result. Lastly, the template utilized for instruction-
tuning in this work still relies on manual design.
Our approach is influenced by previous study that
has been shown to be effective. Nevertheless, it
would be intriguing to explore the development
of automated methods for constructing superior
instruction-tuning templates.
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A Template Filling

We show the templates in Figure 5 for synthesizing
instruction data.
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Input：Can you predict the specific <Property
Name> value of the molecule <SMILES>?

Output: <Property Value>

Input：Can you give a Molecule SMILES
which with the value of <Propety Name> is
<Propety Value>, the value of <Property
Name> is <Propety Value>, ...?

Output: <SMILES>

Input：Can you predict the specific ExactMolWt values of the molecule
COc1ccccc1Nc1nc(N)nc(CSC(=S)N2CCN(c3ccccc3)CC2)n1?

Output: 437.64

Input：Can you give a molecule SMILES which with the value of BalabanJ is 2.04,
the value of ExactMolWt is 336.08, the value of MolLogP is 3.51, the value of TPSA
is 70.02, the value of QED is 0.87?

Output: Cc1cc(OCC(=O)Nc2ccc(F)c(F)c2)nc(C(C)C)n1

Molecular Property Prediction

Multi-Constraints Molecule Generation

<Property Name> <SMILES>
<Property Value>

<Propety Name> <Propety Value>

<Propety Name> <Propety Value>

<SMILES>

+

+
+

Templates Examples of Instruction DataTasks

Input：Can you give a molecule
SMILES and  <Description>?

Output: <SMILES>

Input：Can you give a molecule SMILES and the molecule is a member of the
class of benzimidazoles that is 1h-benzimidazole which is substituted by a
(2r, 4s)-4-{[(4-fluorophenyl)sulfanyl]-2-oxoethyl group at position 1?
Output: O=C(CSc1ncn[nH]1)Nc1c(F)cc(F)cc1Br

Text-Based Molecule Generation

<Description> <SMILES>

Input：How to describe this
molecule <SMILES>?

Output: <Description>.

Input：How to describe this molecule O=C(CSc1ncn[nH]1)Nc1c-(F)cc(F)cc1Br？
Output: the molecule is a member of the class of benzimidazoles that is 1h-
benzimidazole which is substituted by a (2r,4s)-4-{[(4-fluorophenyl)sulfanyl]-2-
oxoethyl group at position 1.

Molecule Captioning

<SMILES> <Description>

Figure 5: Examples of template filling with unstructured data according to four different downstream tasks for
obtaining a variety of instruction data for supervised fine-tuning large language models.

B Details of Baselines

We describe the baseline models in our experiments
as follows:
MolT5 (Edwards et al., 2022) is a framework for
pre-training models on unlabeled text and molecu-
lar data. It introduces tasks like molecule caption-
ing and generating molecules from text.
BioT5 (Pei et al., 2023) is a biology-focused pre-
trained language model trained on diverse biolog-
ical data, linking text with molecular and protein
information.
BioT5+ (Pei et al., 2024) is a model optimized for
biological research. It extends the BioT5 frame-
work, enhancing the understanding and reasoning
of biological texts and sequences, with notable suc-
cess in molecule captioning and generation tasks.
MolXPT (Liu et al., 2023b) is a pre-trained lan-
guage model for molecular science that enriches
both text and molecular SMILES representations
by replacing molecular names in the text with
SMILES notation.
GIT-Mol (Liu et al., 2024) is a multi-modal LLM
designed for molecular science, integrating graph,
image, and text data. It performs well in tasks like
molecule captioning, text-to-molecule generation,
image recognition, and property prediction.
SPMM (Chang and Ye, 2024) is a multi-modal
molecular pre-trained model that combines molec-
ular structure information and biochemical proper-
ties by aligning two distinct features into a shared
embedding space.
LLaMa3 (Touvron et al., 2023) is an open-source
LLM, suitable for various NLP tasks such as sum-
marization, question answering, and translation.

LLaMa3.1 (Dubey et al., 2024) is a series of up-
dated open-source LLM based on LLaMa3, featur-
ing a stronger parameter scale and higher perfor-
mance.
Qwen2.5 (Yang et al., 2024) is an open-source
large model that has been pre-trained on a dataset
containing 18 trillion tokens. It has achieved sig-
nificant improvements in overall capabilities and
excels in a wide range of NLP tasks.
Mol-Instructions (Fang et al., 2023) is a natural
language instruction dataset for biomolecules, de-
signed to enhance the capabilities of large-scale pre-
trained models in the biomolecular domain. This
dataset combines biomolecules (such as proteins,
DNA, RNA, etc.) with natural language instruc-
tions, supporting tasks such as molecule generation,
molecule modification, and reaction prediction. We
use the LLaMa3.1-8B model after SFT on this in-
struction dataset.

C Evaluation Metrics

We evaluated the quality of generated text using
BLEU (Papineni et al., 2002), METEOR (Baner-
jee and Lavie, 2005), and ROUGE scores. These
metrics evaluate the similarity between generated
texts and reference descriptions, effectively quan-
tifying the accuracy and diversity of the generated
descriptions. For the text-based molecule gener-
ation task, we further use molecular fingerprints
(FTS) (Cereto-Massagué et al., 2015) and valid-
ity measures to assess molecular similarity and
validity, including Validity, Levenshtein (Leven-
shtein, 1966), MACCS FTS, Morgan FTS, and RD-
Kit FTS (Landrum et al., 2013). For the task of
molecular property prediction, we chose to use the
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commonly used RMSE to measure the difference
between the predicted values and the molecular
property values calculated by RDKit for compari-
son. In the case of multi-constraint molecule gener-
ation, in addition to RMSE, we also employed R2

to assess the accuracy of the generated molecules
concerning multiple constrained properties.

D More Analysis on SFT Steps

The impact of SFT steps for text-based molecule
generation and single MolLogP property predic-
tion is shown in Figure 6 and Figure 7, respectively.
Similar to two other tasks, we receive the best re-
sults through approximately 5∼6 epochs of SFT.

E Case Study

As for qualitative analysis, we show some case
study for different tasks, directly comparing the
response by LLaMa3.1 and our PEIT-LLM.

Table 6 shows the examples for molecule cap-
tioning. From the responses, we can see that
the captions generated by our model are closer
to the ground truth captions, whereas the original
model often provides vague answers. This demon-
strates that our model has a better understanding of
molecules and can generate high-quality responses
to complete molecular annotation tasks.

Table 7 shows the examples for text-based
molecule generation. We can see that, compared
with LLaMa3.1, the molecules generated by our
model are more structurally reasonable and similar
to the ground truth.

Table 8 shows the examples for molecular prop-
erty prediction. LLaMa3.1 performs poorly in pre-
dicting specific molecular property and lacks the
ability to accurately predict molecular property val-
ues. However, after instruction fine-tuning, our
PEIT-LLM demonstrates excellent performance in
predicting molecular property values, providing a
strong foundation for its outstanding performance
in multi-constraint molecule generation tasks.

Table 9 shows the examples for challenging
multi-constraint molecule generation task. It can be
observed that our model generated molecule with
close properties according to multiple constraints.
This indicates that the multi-task instruction data
generated by our pre-trained model can enhance
the capabilities of LLMs for such challenging task.
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Figure 6: The impact of different amount of SFT steps
for PEIT-LLM on text-based molecule generation task.
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Figure 7: The impact of different amount of SFT steps
for PEIT-LLM on MolLogP property prediction task.
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Input for Molecule Captioning LLaMa3.1 Output Our PEIT-LLM Output Ground Truth
1. How to describe this molecule
CCCCCC1OC1C=CC(O)CC=C
CC=CCCCC(=O)[O-]?

This is a complex or-
ganic molecule contain-
ing a cyclic ether, an
alkene, an alcohol, a ke-
tone, and an enolate an-
ion.

The molecule is a prostaglandin
carboxylic acid anion that is the
conjugate base of prostaglandin
F2alpha, obtained by deprotona-
tion of the carboxy group; ma-
jor species at pH 7.3. It is a
conjugate base of a prostaglandin
F2alpha.

The molecule is an
epoxy(hydroxy)icosatrienoate that
is the conjugate base of 11 hydroxy-
(14R,15S)-epoxy-(5Z,8Z,12E)-
icosatrienoic acid, obtained by
deprotonation of the carboxy group;
major species at pH 7.3. It is a conju-
gate base of an 11 hydroxy-(14R,15S)
-epoxy-(5Z,8Z,12E)-icosatrienoic acid.

2. How to describe this molecule
[Te]?

The molecule [Te] repre-
sents a tellurium atom in
its elemental form.

The molecule is the stable iso-
tope of tellurium with relative
atomic mass 127.904, 7.00 atom
percent natural abundance and
nuclear spin 1/2.

The molecule is the stable isotope of
tellurium with relative atomic mass
124.904425, 71.4 atom percent natural
abundance and nuclear spin 1/2.

3. How to describe this molecule
CN(N=O)C(N)=O?

This molecule is a ni-
trosoguanidine, charac-
terized by a central car-
bon atom double-bonded
to nitrogen and oxygen,
with an additional nitro-
gen atom attached to the
carbon.

The molecule is a nitrosamine
that is urea in which one of the ni-
trogens is substituted by methyl
and nitroso groups. It has a role
as a carcinogenic agent, a muta-
gen, a teratogenic agent and an
alkylating agent.

The molecule is a member of the class
of N-nitrosoureas that is urea in which
one of the nitrogens is substituted by
methyl and nitroso groups. It has a
role as a carcinogenic agent, a mutagen,
a teratogenic agent and an alkylating
agent.

Table 6: Examples of responses by LLaMa3.1 and our PEIT-LLM on molecule captioning.

Input for Text-based Molecule Generation LLaMa3.1 Output Our PEIT-LLM Output Ground Truth
1. Can you give a molecule SMILES and the Cn1c(=O)c2c(nc(NCC3CCCO3)n2C NC(CCCC(=O)O)C(=O)O C(CC(=O)O)C(CC(=O)O)N
molecule is an amino dicarboxylic acid that is C(=O)c2ccccc2)n(C)c1=O
adipic acid in which one of the hydrogens at
position 3 is replaced by an amino group. It is
a beta-aminoacid an amino dicarboxylic acid
and a gamma-amino acid. It derives from an
adipic acid?

2. Can you give a molecule SMILES and the CN(C)C1=CC=C2[NH1]C=3C(C([NH3 CCCCCCCC(=O)CC CCCCCCCCC(=O)C
molecule is a methyl ketone that is decane in +1])=O)=CC(=O)C(=O)C=3OC2=C1
which the methylene hydrogens at position 2
are replaced by an oxo group. It has a role as
a plant metabolite. It derives from a hydride
of a decane?

3. Can you give a molecule SMILES and the C1=CC(=O)OC2=CC(=C(C=C21)O CCOP(=S)(OCC)OC1=NN(C=N1) CCOP(=S)(OCC)OCC1=CC(=O)
molecule is a member of the class of Nnitro- [C@H]3[C@@H]([C@H]([C@@H] C2=CC=CC=C2 N(C2=CC=CC=C2)N1
soureas that is urea in which one of the nitro- ([C@H](O3)CO)O)O)O)O
gens is substituted by methyl and nitroso
groups. It has a role as a carcinogenic agent, a
mutagen, a teratogenic agent and an alkylating
agent?

Table 7: Examples of responses by LLaMa3.1 and our PEIT-LLM for text-based molecule generation.

Input LLaMa3.1 Output Our PEIT-LLM Output Ground Truth

1. Can you predict the specific MolLogP values of the molecule?
CC1CC(C)CN(S(=O)(=O)c2ccc(C(=O)Nc3nnc(C4CC4)o3)cc2)C1

23.42 2.65 2.66

2. Can you predict the specific ExactMolWt values of the molecule?
COc1ccc(NC(=O)Cn2ccn(-c3ccc(F)c(F)c3)c(=O)c2=O)cc1Cl

13.77 404.94 404.25

3. Can you predict the specific MolLogP values of the molecule?
Cc1cc2c(cc1)C(=O)NC(C)C2

18.98 2.53 2.52

Table 8: Examples of responses by LLaMa3.1 and our PEIT-LLM for molecular property prediction.
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Input for Multi-Constraint Molecule
Generation

LLaMa3.1 Output (Verified Values by
RDKit)

Our PEIT-LLM Output (Verified Values by
RDKit)

1. Can you give a molecule SMILES
which with the value of BalabanJ is 1.68,
the value of ExactMolWt is 492.20, the
value of MolLogP is 3.14, the value of
TPSA is 138.76, the value of QED is
0.33?

NN=c1sc2ccccc2n1-c1ccccc1 (Bala-
banJ is 2.42, ExactMolWt is 241.06,
MolLogP is 2.46, TPSA is 43.30, QED is
0.51)

CCOc1cc(C=NNC(=O)c2ccncc2)ccc1OS(=O)
(=O)c1ccc(NC(C)=O)cc1 (BalabanJ is 1.74,
ExactMolWt is 482.12, MolLogP is 2.97, TPSA
is 136.04, QED is 0.27)

2. Can you give a molecule SMILES
which with the value of BalabanJ is 1.33,
the value of ExactMolWt is 467.20, the
value of MolLogP is 3.54, the value of
TPSA is 92.42, the value of QED is 0.52?

O=C(CN1CCN(c2ccc(Cl)cc2)CC1)Nc1ccc(F)
cc1F (BalabanJ is 1.49, ExactMolWt is
365.11, MolLogP is 3.37, TPSA is 35.58,
QED is 0.90)

O=C(COC(=O)c1ccc(S(=O)(=O)N2CCCc3ccc
cc32)cc1)Nc1ccc(F)cc1 (BalabanJ is 1.39,
ExactMolWt is 468.11, MolLogP is 3.76, TPSA
is 92.78, QED is 0.55)

3. Can you give a molecule SMILES
which with the value of BalabanJ is 1.98,
the value of ExactMolWt is 303.13, the
value of MolLogP is 3.06, the value of
TPSA is 64.11, the value of QED is 0.92?

O=C(NCc1cccc(F)c1)Nc1nnc(C2CC(O)C(CO)
O2)s1 (BalabanJ is 1.51, ExactMolWt is
368.09, MolLogP is 1.18, TPSA is 116.60,
QED is 0.62)

Cc1cccc(NS(=O)(=O)c2ccc3oc(C)c(C)c3c
2)n1 (BalabanJ is 2.11, ExactMolWt is 306.10,
MolLogP is 2.88, TPSA is 67.43, QED is 0.90)

Table 9: Examples of responses by LLaMa3.1 and our PEIT-LLM for multi-constraint molecule generation, and the
verified property values of the output molecule are shown in the brackets.

14


	Introduction
	Related Work
	Method
	Overview of PEIT Framework
	Pre-training of PEIT-GEN
	Instruction Tuning for PEIT-LLM
	Comparing PEIT-LLM with Biomolecular Models and LLMs

	Experiments
	Experimental Setup
	Comparing PEIT-GEN with Pre-trained Biomolecular Models
	Comparing PEIT-LLM with LLMs
	Analysis

	Conclusion
	Template Filling
	Details of Baselines
	Evaluation Metrics
	More Analysis on SFT Steps
	Case Study

